skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silicon Composite Electrodes with Dynamic Ionic Bonding

Abstract

Silicon (Si) composite electrodes are created with increased cycle lifetimes and reliability through dynamic ionic bonding between active Si nanoparticles and a polymer binder. Amine groups are covalently attached to Si nanoparticles via surface functionalization. Si composite electrodes are fabricated by combining the Si nanoparticles with a poly(acrylic acid) (PAA) binder. The formation of ionic bonds between amine groups on Si particles and carboxylic acid groups on the PAA binder is characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Si composite anodes with ionic bonding demonstrate long term cycling stability with capacity retention of 80% at 400 cycles at a current density of 2.1 A g –1 and good rate capability. Furthermore, the dynamic ionic bonds effectively mitigate the deterioration of electrical interfaces in the composite anodes as suggested by stable impedance over 300 cycles.

Authors:
 [1];  [1];  [2];  [1]
  1. Univ. of Illinois at Urbana-Champaign, IL (United States). Beckman Inst. for Advanced Science and Technology; Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Materials Science and Engineering
  2. Univ. of Illinois at Urbana-Champaign, IL (United States). Beckman Inst. for Advanced Science and Technology; Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Aerospace Engineering
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Energy Frontier Research Center (EFRC) Center for Electrical Energy Storage (CEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1469920
Alternate Identifier(s):
OSTI ID: 1378805
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 7; Journal Issue: 17; Related Information: CEES partners with Argonne National Laboratory (lead); University of Illinois, Urbana-Champaign; Northwest University; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; ionic bonding; Li‐ion batteries; restoration of electrical interfaces; Si composite anodes

Citation Formats

Kang, Sen, Yang, Ke, White, Scott R., and Sottos, Nancy R. Silicon Composite Electrodes with Dynamic Ionic Bonding. United States: N. p., 2017. Web. doi:10.1002/aenm.201700045.
Kang, Sen, Yang, Ke, White, Scott R., & Sottos, Nancy R. Silicon Composite Electrodes with Dynamic Ionic Bonding. United States. doi:10.1002/aenm.201700045.
Kang, Sen, Yang, Ke, White, Scott R., and Sottos, Nancy R. Fri . "Silicon Composite Electrodes with Dynamic Ionic Bonding". United States. doi:10.1002/aenm.201700045. https://www.osti.gov/servlets/purl/1469920.
@article{osti_1469920,
title = {Silicon Composite Electrodes with Dynamic Ionic Bonding},
author = {Kang, Sen and Yang, Ke and White, Scott R. and Sottos, Nancy R.},
abstractNote = {Silicon (Si) composite electrodes are created with increased cycle lifetimes and reliability through dynamic ionic bonding between active Si nanoparticles and a polymer binder. Amine groups are covalently attached to Si nanoparticles via surface functionalization. Si composite electrodes are fabricated by combining the Si nanoparticles with a poly(acrylic acid) (PAA) binder. The formation of ionic bonds between amine groups on Si particles and carboxylic acid groups on the PAA binder is characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Si composite anodes with ionic bonding demonstrate long term cycling stability with capacity retention of 80% at 400 cycles at a current density of 2.1 A g–1 and good rate capability. Furthermore, the dynamic ionic bonds effectively mitigate the deterioration of electrical interfaces in the composite anodes as suggested by stable impedance over 300 cycles.},
doi = {10.1002/aenm.201700045},
journal = {Advanced Energy Materials},
issn = {1614-6832},
number = 17,
volume = 7,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries
journal, July 2012

  • Koo, Bonjae; Kim, Hyunjung; Cho, Younghyun
  • Angewandte Chemie International Edition, Vol. 51, Issue 35
  • DOI: 10.1002/anie.201201568

Highly stretchable and tough hydrogels
journal, September 2012

  • Sun, Jeong-Yun; Zhao, Xuanhe; Illeperuma, Widusha R. K.
  • Nature, Vol. 489, Issue 7414
  • DOI: 10.1038/nature11409

High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries
journal, January 2012

  • Lin, Yong-Mao; Klavetter, Kyle C.; Abel, Paul R.
  • Chemical Communications, Vol. 48, Issue 58
  • DOI: 10.1039/c2cc31712e

Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries
journal, July 2014

  • Song, Jiangxuan; Zhou, Mingjiong; Yi, Ran
  • Advanced Functional Materials, Vol. 24, Issue 37
  • DOI: 10.1002/adfm.201401269

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

FTIR studies of conformational energies of poly(acrylic acid) in cast films
journal, February 1997


Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells
journal, January 2007


Synthesis and Rapid Characterization of Amine-Functionalized Silica
journal, March 2012

  • Soto-Cantu, Erick; Cueto, Rafael; Koch, Jerome
  • Langmuir, Vol. 28, Issue 13
  • DOI: 10.1021/la204981b

Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries
journal, January 2015

  • Luo, Fei; Liu, Bonan; Zheng, Jieyun
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0131514jes

Sodium Carboxymethyl Cellulose
journal, January 2007

  • Li, Jing; Lewis, R. B.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 10, Issue 2
  • DOI: 10.1149/1.2398725

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

FTIR spectroscopic studies of interfacial reactions between amino functionalized silicon surfaces and molten maleic anhydride copolymers
journal, April 1999


A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self-Healing Elastic Polymer
journal, January 2016

  • Sun, Yongming; Lopez, Jeffrey; Lee, Hyun-Wook
  • Advanced Materials, Vol. 28, Issue 12
  • DOI: 10.1002/adma.201504723

Using the dynamic bond to access macroscopically responsive structurally dynamic polymers
journal, December 2010

  • Wojtecki, Rudy J.; Meador, Michael A.; Rowan, Stuart J.
  • Nature Materials, Vol. 10, Issue 1
  • DOI: 10.1038/nmat2891

Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries
journal, February 2010

  • Bridel, J. -S.; Azaïs, T.; Morcrette, M.
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm902688w

The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes
journal, January 2016

  • Lopez, Jeffrey; Chen, Zheng; Wang, Chao
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b11363

Autonomous self-healing of poly(acrylic acid) hydrogels induced by the migration of ferric ions
journal, January 2013

  • Wei, Zengjiang; He, Jie; Liang, Tony
  • Polymer Chemistry, Vol. 4, Issue 17
  • DOI: 10.1039/c3py00692a

Self-Healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures
journal, July 2008

  • Andreeva, Daria V.; Fix, Dmitri; M¨︁ohwald, Helmuth
  • Advanced Materials, Vol. 20, Issue 14
  • DOI: 10.1002/adma.200800705

Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review
journal, October 2013


Designing nanostructured Si anodes for high energy lithium ion batteries
journal, October 2012


Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries
journal, September 2011


Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter
journal, January 2016

  • Ashuri, Maziar; He, Qianran; Shaw, Leon L.
  • Nanoscale, Vol. 8, Issue 1
  • DOI: 10.1039/C5NR05116A

ESCA Studies of heparinized and related surfaces
journal, October 1983


Hollow carbon nanospheres/silicon/alumina core-shell film as an anode for lithium-ion batteries
journal, January 2015

  • Li, Bing; Yao, Fei; Bae, Jung Jun
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep07659

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Mussel-Inspired Adhesive Binders for High-Performance Silicon Nanoparticle Anodes in Lithium-Ion Batteries
journal, December 2012

  • Ryou, Myung-Hyun; Kim, Jangbae; Lee, Inhwa
  • Advanced Materials, Vol. 25, Issue 11
  • DOI: 10.1002/adma.201203981

Investigation of the Solid Electrolyte Interphase Formed by Fluoroethylene Carbonate on Si Electrodes
journal, January 2011

  • Nakai, Hideki; Kubota, Tadahiko; Kita, Akinori
  • Journal of The Electrochemical Society, Vol. 158, Issue 7
  • DOI: 10.1149/1.3589300

Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes
journal, July 2014

  • Li, Xiaolin; Gu, Meng; Hu, Shenyang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5105

High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries
journal, January 2012

  • Han, Zhen-Ji; Yabuuchi, Naoaki; Shimomura, Keiji
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22292b

Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries
journal, November 2013

  • Wang, Chao; Wu, Hui; Chen, Zheng
  • Nature Chemistry, Vol. 5, Issue 12
  • DOI: 10.1038/nchem.1802

Raman spectroscopic studies on the interaction between divalent counterion and polyion
journal, November 1983


Autonomic Self-Healing of Hydrogel Thin Films
journal, December 2009

  • South, Antoinette B.; Lyon, L. Andrew
  • Angewandte Chemie International Edition, Vol. 49, Issue 4
  • DOI: 10.1002/anie.200906040