skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide

Abstract

Abstract Meso–macroporous polymers possessing nitrogen functionality were innovatively synthesized through an aqueous and template‐free route herein. Specifically, the polymerization of 1‐(4‐vinylbenzyl)‐1,3,5,7‐tetraazaadamantan‐1‐ium chloride in aqueous solution under high temperatures induces the decomposition of the hexamethylenetetramine unit into ammonia and formaldehyde molecules, followed by the cross‐linking of benzene rings through “resol chemistry”. During this process, extended meso–macroporous frameworks were constructed, and active nitrogen species were incorporated. Taking the advantage of the meso–macroporosity and nitrogen functionality, the synthesized polymers offer competitive CO 2 capacities (0.37–1.58 mmol g −1 at 0 °C and 0.15 bar) and outstanding CO 2 /N 2 selectivities (155–324 at 0 °C). Furthermore, after complexed with metal ions, the synthesized polymers show excellent activity for catalyzing the cycloaddition of propylene oxide with CO 2 (yield>98.5 %, turnover frequency: 612.9–761.1 h −1 ).

Authors:
 [1]; ORCiD logo [2];  [2];  [3]
  1. Nanchang Univ. (China)
  2. Fuzhou Univ. (China)
  3. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Georgia Inst. of Technology, Atlanta, GA (United States). Energy Frontier Research Center (EFRC) Center for Understanding and Control of Acid Gas-induced Evolution of Materials for Energy (UNCAGE-ME)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1469891
Alternate Identifier(s):
OSTI ID: 1399273
Grant/Contract Number:  
SC0012577
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Volume: 10; Journal Issue: 21; Related Information: UNCAGE-ME partners with Georgia Institute of Technology (lead); Lehigh University; Oak Ridge National Laboratory; University of Alabama; University of Florida; University of Wisconsin; Washington University in St. Louis; Journal ID: ISSN 1864-5631
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 54 ENVIRONMENTAL SCIENCES; 36 MATERIALS SCIENCE; carbon dioxide capture; carbon dioxide conversion; meso-macropores; nitrogen functionality; porous organic polymers

Citation Formats

Huang, Kuan, Liu, Fujian, Jiang, Lilong, and Dai, Sheng. Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide. United States: N. p., 2017. Web. doi:10.1002/cssc.201701666.
Huang, Kuan, Liu, Fujian, Jiang, Lilong, & Dai, Sheng. Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide. United States. https://doi.org/10.1002/cssc.201701666
Huang, Kuan, Liu, Fujian, Jiang, Lilong, and Dai, Sheng. 2017. "Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide". United States. https://doi.org/10.1002/cssc.201701666. https://www.osti.gov/servlets/purl/1469891.
@article{osti_1469891,
title = {Aqueous and Template-Free Synthesis of Meso-Macroporous Polymers for Highly Selective Capture and Conversion of Carbon Dioxide},
author = {Huang, Kuan and Liu, Fujian and Jiang, Lilong and Dai, Sheng},
abstractNote = {Abstract Meso–macroporous polymers possessing nitrogen functionality were innovatively synthesized through an aqueous and template‐free route herein. Specifically, the polymerization of 1‐(4‐vinylbenzyl)‐1,3,5,7‐tetraazaadamantan‐1‐ium chloride in aqueous solution under high temperatures induces the decomposition of the hexamethylenetetramine unit into ammonia and formaldehyde molecules, followed by the cross‐linking of benzene rings through “resol chemistry”. During this process, extended meso–macroporous frameworks were constructed, and active nitrogen species were incorporated. Taking the advantage of the meso–macroporosity and nitrogen functionality, the synthesized polymers offer competitive CO 2 capacities (0.37–1.58 mmol g −1 at 0 °C and 0.15 bar) and outstanding CO 2 /N 2 selectivities (155–324 at 0 °C). Furthermore, after complexed with metal ions, the synthesized polymers show excellent activity for catalyzing the cycloaddition of propylene oxide with CO 2 (yield>98.5 %, turnover frequency: 612.9–761.1 h −1 ).},
doi = {10.1002/cssc.201701666},
url = {https://www.osti.gov/biblio/1469891}, journal = {ChemSusChem},
issn = {1864-5631},
number = 21,
volume = 10,
place = {United States},
year = {Fri Sep 01 00:00:00 EDT 2017},
month = {Fri Sep 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of pore size on carbon dioxide sorption by carbide derived carbon
journal, January 2011


Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups
journal, January 2014


Design and Preparation of Porous Polymers
journal, April 2012


Thermodynamics of mixed-gas adsorption
journal, January 1965


Importance of Micropore-Mesopore Interfaces in Carbon Dioxide Capture by Carbon-Based Materials
journal, June 2016


Nitrogen-Rich Covalent Triazine Frameworks as High-Performance Platforms for Selective Carbon Capture and Storage
journal, November 2015


Fabrication of mesoporous polymer monolith: a template-free approach
journal, January 2011


Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues
journal, August 2016


Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons
journal, February 2008


Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities
journal, July 2011


Novel hollow and yolk–shell structured periodic mesoporous polymer nanoparticles
journal, January 2016


Carbon dioxide capture in amorphous porous organic polymers
journal, January 2017


Triptycene based 1,2,3-triazole linked network polymers (TNPs): small gas storage and selective CO 2 capture
journal, January 2015


A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres
journal, December 2013


Mesoporous Poly(Melamine-Formaldehyde) Solid Sorbent for Carbon Dioxide Capture
journal, June 2013


Nitrogen-rich conjugated microporous polymers: impact of building blocks on porosity and gas adsorption
journal, January 2015


High CO 2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers
journal, January 2012


Conjugated porous polymers for energy applications
journal, January 2012


Phosphonium salt incorporated hypercrosslinked porous polymers for CO 2 capture and conversion
journal, January 2015


Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture
journal, October 2015


Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation
journal, November 2005


Porous polymer catalysts with hierarchical structures
journal, January 2015


Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO 2 capture and conversion
journal, January 2015


High and selective CO 2 adsorption by a phthalocyanine nanoporous polymer
journal, January 2015


Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate
journal, May 2008


Microporous organic polymers for gas storage and separation applications
journal, January 2013


A sustainable protocol for the facile synthesis of zinc-glutamate MOF: an efficient catalyst for room temperature CO 2 fixation reactions under wet conditions
journal, January 2016


A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Iad Bicontinuous Cubic Structure
journal, October 2005


Conjugated Microporous Polymers with Dimensionality-Controlled Heterostructures for Green Energy Devices
journal, May 2015


Construction of Sole Benzene Ring Porous Aromatic Frameworks and Their High Adsorption Properties
journal, December 2014


Direct Capture of CO2 from Ambient Air
journal, August 2016


Polymer sensors for nitroaromatic explosives detection
journal, January 2006


Functional porous organic polymers for heterogeneous catalysis
journal, January 2012


Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues
journal, August 2016


Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation
journal, November 2005


Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer
journal, July 2009


Triazine functionalized ordered mesoporous polymer: a novel solid support for Pd-mediated C–C cross-coupling reactions in water
journal, January 2011


Enhanced Carbon Dioxide Capture from Landfill Gas Using Bifunctionalized Benzimidazole-Linked Polymers
journal, June 2016


A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly
journal, September 2006


Funktionale poröse Koordinationspolymere
journal, April 2004


Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area
journal, November 2009


Porous Organic Polymers in Catalysis Opportunities and Challenges
journal, May 2011


Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources
journal, September 2009


Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer
journal, June 2013


Importance of Micropore–Mesopore Interfaces in Carbon Dioxide Capture by Carbon‐Based Materials
journal, March 2016


One-step synthesis of nitrogen-doped graphene-like meso-macroporous carbons as highly efficient and selective adsorbents for CO 2 capture
journal, January 2016


Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation
journal, March 2012


Sulfonate-Grafted Porous Polymer Networks for Preferential CO2 Adsorption at Low Pressure
journal, November 2011


Hierarchically porous organic polymers: highly enhanced gas uptake and transport through templated synthesis
journal, January 2015


Azo-functionalized microporous organic polymers: synthesis and applications in CO 2 capture and conversion
journal, January 2015


Supercapacitive Energy Storage and Electric Power Supply Using an Aza-Fused π-Conjugated Microporous Framework
journal, August 2011


Efficient Fixation of CO 2 by a Zinc-Coordinated Conjugated Microporous Polymer
journal, May 2014


Zn( ii ) assisted synthesis of porous salen as an efficient heterogeneous scaffold for capture and conversion of CO 2
journal, January 2015


Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area
journal, November 2009


Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
journal, November 2010


Covalent Organic Frameworks for CO 2 Capture
journal, February 2016


Functional Porous Coordination Polymers
journal, April 2004


Porous Phosphorescent Coordination Polymers for Oxygen Sensing
journal, January 2010


Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools
journal, January 2013


Combined CO 2 -philicity and Ordered Mesoporosity for Highly Selective CO 2 Capture at High Temperatures
journal, June 2015


Nanoscale covalent organic frameworks as smart carriers for drug delivery
journal, January 2016


3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery
journal, June 2015


Facile fabrication of cost-effective porous polymer networks for highly selective CO 2 capture
journal, January 2015


CO2 capture by solid adsorbents and their applications: current status and new trends
journal, January 2011


Works referencing / citing this record: