skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium Electrochemical Tuning for Electrocatalysis

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [4]
  1. Department of Material Science and Engineering, Stanford University, Stanford CA 94305 USA
  2. Rowland Institute, Harvard University, Cambridge MA 02142 USA
  3. Rowland Institute, Harvard University, Cambridge MA 02142 USA, Department of Chemical and Biomolecular Engineering, Rice University, Houston TX 77005 USA
  4. Department of Material Science and Engineering, Stanford University, Stanford CA 94305 USA, Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park CA 94025 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1469405
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 30 Journal Issue: 48; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Lu, Zhiyi, Jiang, Kun, Chen, Guangxu, Wang, Haotian, and Cui, Yi. Lithium Electrochemical Tuning for Electrocatalysis. Germany: N. p., 2018. Web. doi:10.1002/adma.201800978.
Lu, Zhiyi, Jiang, Kun, Chen, Guangxu, Wang, Haotian, & Cui, Yi. Lithium Electrochemical Tuning for Electrocatalysis. Germany. doi:10.1002/adma.201800978.
Lu, Zhiyi, Jiang, Kun, Chen, Guangxu, Wang, Haotian, and Cui, Yi. Mon . "Lithium Electrochemical Tuning for Electrocatalysis". Germany. doi:10.1002/adma.201800978.
@article{osti_1469405,
title = {Lithium Electrochemical Tuning for Electrocatalysis},
author = {Lu, Zhiyi and Jiang, Kun and Chen, Guangxu and Wang, Haotian and Cui, Yi},
abstractNote = {},
doi = {10.1002/adma.201800978},
journal = {Advanced Materials},
number = 48,
volume = 30,
place = {Germany},
year = {Mon Sep 10 00:00:00 EDT 2018},
month = {Mon Sep 10 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 10, 2019
Publisher's Accepted Manuscript

Save / Share:

Works referenced in this record:

Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air
journal, December 2010

  • Lee, Jang-Soo; Tai Kim, Sun; Cao, Ruiguo
  • Advanced Energy Materials, Vol. 1, Issue 1, p. 34-50
  • DOI: 10.1002/aenm.201000010

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

MoS2 Nanoparticles Grown on Graphene An Advanced Catalyst for the Hydrogen Evolution Reaction
journal, May 2011

  • Li, Yanguang; Wang, Hailiang; Xie, Liming
  • Journal of the American Chemical Society, Vol. 133, Issue 19, p. 7296-7299
  • DOI: 10.1021/ja201269b

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability
journal, January 2007

  • Stamenkovic, V. R.; Fowler, B.; Mun, B. S.
  • Science, Vol. 315, Issue 5811, p. 493-497
  • DOI: 10.1126/science.1135941

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction
journal, August 2011

  • Liang, Yongye; Li, Yanguang; Wang, Hailiang
  • Nature Materials, Vol. 10, Issue 10, p. 780-786
  • DOI: 10.1038/nmat3087

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

Structurally ordered intermetallic platinum�cobalt core�shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts
journal, October 2012

  • Wang, Deli; Xin, Huolin L.; Hovden, Robert
  • Nature Materials, Vol. 12, Issue 1, p. 81-87
  • DOI: 10.1038/nmat3458

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction
journal, February 2009


High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt
journal, April 2011


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers
journal, February 2013

  • Kong, Desheng; Wang, Haotian; Cha, Judy J.
  • Nano Letters, Vol. 13, Issue 3, p. 1341-1347
  • DOI: 10.1021/nl400258t

Photoluminescence from Chemically Exfoliated MoS2
journal, December 2011

  • Eda, Goki; Yamaguchi, Hisato; Voiry, Damien
  • Nano Letters, Vol. 11, Issue 12, p. 5111-5116
  • DOI: 10.1021/nl201874w

Engineering the surface structure of MoS2 to�preferentially expose active edge sites for�electrocatalysis
journal, October 2012

  • Kibsgaard, Jakob; Chen, Zhebo; Reinecke, Benjamin N.
  • Nature Materials, Vol. 11, Issue 11, p. 963-969
  • DOI: 10.1038/nmat3439

Platinum Monolayer on Nonnoble Metal?Noble Metal Core?Shell Nanoparticle Electrocatalysts for O2 Reduction
journal, December 2005

  • Zhang, J.; Lima, F. H. B.; Shao, M. H.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 48, p. 22701-22704
  • DOI: 10.1021/jp055634c

Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2
journal, July 2012

  • Eda, Goki; Fujita, Takeshi; Yamaguchi, Hisato
  • ACS Nano, Vol. 6, Issue 8, p. 7311-7317
  • DOI: 10.1021/nn302422x

Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells
journal, April 2009

  • Lef�vre, Michel; Proietti, Eric; Jaouen, Fr�d�ric
  • Science, Vol. 324, Issue 5923, p. 71-74
  • DOI: 10.1126/science.1170051

Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts
journal, July 2007

  • Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.
  • Science, Vol. 317, Issue 5834, p. 100-102
  • DOI: 10.1126/science.1141483