skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Graphene metamaterial modulator for free-space thermal radiation

Abstract

We proposed and demonstrated a new metamaterial architecture capable of high speed modulation of free-space space thermal infrared radiation using graphene. Our design completely eliminates channel resistance, thereby maximizing the electrostatic modulation speed, while at the same time effectively modulating infrared radiation. Experiment results verify that our device with area of 100 × 120 µm 2 can achieve a modulation speed as high as 2.6 GHz. We further highlight the utility of our graphene metamaterial modulator by reconstructing a fast infrared signal using an equivalent time sampling technique. The graphene metamaterial modulator demonstrated here is not only limited to the thermal infrared, but may be scaled to longer infrared and terahertz wavelengths. Our work provides a path forward for realization of frequency selective and all-electronic high speed devices for infrared applications.

Authors:
 [1];  [1];  [2];  [1]
  1. Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering
  2. Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering; Boston College, Chestnut Hill, MA (United States). Dept. of Physics
Publication Date:
Research Org.:
Duke Univ., Durham, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Office of Naval Research (ONR) (United States); National Science Foundation (NSF)
OSTI Identifier:
1467067
Grant/Contract Number:  
SC0014372; N00014-15-1-0051; ECCS-1542015
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Optics Express
Additional Journal Information:
Journal Volume: 24; Journal Issue: 22; Journal ID: ISSN 1094-4087
Publisher:
Optical Society of America (OSA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; invisibility cloaks; liquid crystals; metamaterial absorbers; metamaterial devices; modulation techniques; scanning electron microscopy

Citation Formats

Fan, Kebin, Suen, Jonathan, Wu, Xueyuan, and Padilla, Willie J. Graphene metamaterial modulator for free-space thermal radiation. United States: N. p., 2016. Web. doi:10.1364/OE.24.025189.
Fan, Kebin, Suen, Jonathan, Wu, Xueyuan, & Padilla, Willie J. Graphene metamaterial modulator for free-space thermal radiation. United States. doi:10.1364/OE.24.025189.
Fan, Kebin, Suen, Jonathan, Wu, Xueyuan, and Padilla, Willie J. Wed . "Graphene metamaterial modulator for free-space thermal radiation". United States. doi:10.1364/OE.24.025189. https://www.osti.gov/servlets/purl/1467067.
@article{osti_1467067,
title = {Graphene metamaterial modulator for free-space thermal radiation},
author = {Fan, Kebin and Suen, Jonathan and Wu, Xueyuan and Padilla, Willie J.},
abstractNote = {We proposed and demonstrated a new metamaterial architecture capable of high speed modulation of free-space space thermal infrared radiation using graphene. Our design completely eliminates channel resistance, thereby maximizing the electrostatic modulation speed, while at the same time effectively modulating infrared radiation. Experiment results verify that our device with area of 100 × 120 µm2 can achieve a modulation speed as high as 2.6 GHz. We further highlight the utility of our graphene metamaterial modulator by reconstructing a fast infrared signal using an equivalent time sampling technique. The graphene metamaterial modulator demonstrated here is not only limited to the thermal infrared, but may be scaled to longer infrared and terahertz wavelengths. Our work provides a path forward for realization of frequency selective and all-electronic high speed devices for infrared applications.},
doi = {10.1364/OE.24.025189},
journal = {Optics Express},
issn = {1094-4087},
number = 22,
volume = 24,
place = {United States},
year = {2016},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: (a) Schematic of the tunable metamaterial absorber with metamaterial structures patterned on single layer graphene. Spectral tuning is achieved by gating the graphene via applying voltage between metamaterial layer and metallic ground plane. (b) Scanning electron microscope (SEM) image of the patterned metamaterial on graphene by electron beammore » lithography (EBL).The total area of metamaterial is 100 x 120 µm2. The scale bar is 5 µm. Inset: a close-up view of the metamaterial with dimensions. px = 2 µm, py = 1.2 µm, l = 1.3 µm, w1 = 200 nm, w2 = 300 nm, g = 100 nm.« less

Save / Share:

Works referenced in this record:

Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects
journal, March 2007


High speed terahertz modulation from metamaterials with embedded high electron mobility transistors
journal, January 2011

  • Shrekenhamer, David; Rout, Saroj; Strikwerda, Andrew C.
  • Optics Express, Vol. 19, Issue 10
  • DOI: 10.1364/OE.19.009968

Broadband Ground-Plane Cloak
journal, January 2009


Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric
journal, February 2009

  • Kim, Seyoung; Nah, Junghyo; Jo, Insun
  • Applied Physics Letters, Vol. 94, Issue 6
  • DOI: 10.1063/1.3077021

Polarization modulation by tunable electromagnetic metamaterial reflector/absorber
journal, January 2010


Switching terahertz waves with gate-controlled active graphene metamaterials
journal, September 2012

  • Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3433

Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride
journal, January 2012

  • Kischkat, Jan; Peters, Sven; Gruska, Bernd
  • Applied Optics, Vol. 51, Issue 28
  • DOI: 10.1364/AO.51.006789

A self-consistent theory for graphene transport
journal, November 2007

  • Adam, S.; Hwang, E. H.; Galitski, V. M.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 47
  • DOI: 10.1073/pnas.0704772104

Tunable Meta-Liquid Crystals
journal, December 2015


Liquid Crystal Tunable Metamaterial Absorber
journal, April 2013


Hysteresis of Electronic Transport in Graphene Transistors
journal, November 2010

  • Wang, Haomin; Wu, Yihong; Cong, Chunxiao
  • ACS Nano, Vol. 4, Issue 12
  • DOI: 10.1021/nn101950n

Optical far-infrared properties of a graphene monolayer and multilayer
journal, October 2007


New, directly digital automatic titration apparatus
journal, August 1972

  • Hieftje, G. M.; Mandarano, B. M.
  • Analytical Chemistry, Vol. 44, Issue 9
  • DOI: 10.1021/ac60317a011

Drude conductivity of Dirac fermions in graphene
journal, April 2011


Contact resistance in top-gated graphene field-effect transistors
journal, July 2011

  • Huang, Bo-Chao; Zhang, Ming; Wang, Yanjie
  • Applied Physics Letters, Vol. 99, Issue 3
  • DOI: 10.1063/1.3614474

Sub-Diffraction-Limited Optical Imaging with a Silver Superlens
journal, April 2005


Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability
journal, October 2010

  • Pryce, Imogen M.; Aydin, Koray; Kelaita, Yousif A.
  • Nano Letters, Vol. 10, Issue 10, p. 4222-4227
  • DOI: 10.1021/nl102684x

Thermochromic Infrared Metamaterials
journal, November 2015


Toward Clean and Crackless Transfer of Graphene
journal, October 2011

  • Liang, Xuelei; Sperling, Brent A.; Calizo, Irene
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn203377t

Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials
journal, June 2013


Experimental Verification of a Negative Index of Refraction
journal, April 2001


Contact resistivity and current flow path at metal/graphene contact
journal, October 2010

  • Nagashio, K.; Nishimura, T.; Kita, K.
  • Applied Physics Letters, Vol. 97, Issue 14
  • DOI: 10.1063/1.3491804

Photoinduced handedness switching in terahertz chiral metamolecules
journal, January 2012

  • Zhang, Shuang; Zhou, Jiangfeng; Park, Yong-Shik
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1908

Experimental demonstration of frequency-agile terahertz metamaterials
journal, April 2008


Reconfigurable Terahertz Metamaterials
journal, October 2009


Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates
journal, November 2013

  • Fan, Kebin; Zhao, Xiaoguang; Zhang, Jingdi
  • IEEE Transactions on Terahertz Science and Technology, Vol. 3, Issue 6
  • DOI: 10.1109/TTHZ.2013.2285619

Memory Metamaterials
journal, August 2009


A metamaterial solid-state terahertz phase modulator
journal, February 2009

  • Chen, Hou-Tong; Padilla, Willie J.; Cich, Michael J.
  • Nature Photonics, Vol. 3, Issue 3, p. 148-151
  • DOI: 10.1038/nphoton.2009.3

Three-dimensional broadband tunable terahertz metamaterials
journal, April 2013


Polarization dependent state to polarization independent state change in THz metamaterials
journal, November 2011

  • Zhu, W. M.; Liu, A. Q.; Zhang, W.
  • Applied Physics Letters, Vol. 99, Issue 22
  • DOI: 10.1063/1.3664131

Low contact resistance metals for graphene based devices
journal, April 2012


Three-Dimensional Invisibility Cloak at Optical Wavelengths
journal, March 2010


Three-dimensional optical metamaterial with a negative refractive index
journal, August 2008

  • Valentine, Jason; Zhang, Shuang; Zentgraf, Thomas
  • Nature, Vol. 455, Issue 7211
  • DOI: 10.1038/nature07247

Active terahertz metamaterial devices
journal, November 2006

  • Chen, Hou-Tong; Padilla, Willie J.; Zide, Joshua M. O.
  • Nature, Vol. 444, Issue 7119, p. 597-600
  • DOI: 10.1038/nature05343

Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance
journal, August 2011


    Works referencing / citing this record:

    Graphene metamaterial modulator for free-space thermal radiation [Supplementary Data]
    dataset, October 2016

    • Fan, Kebin; Suen, Jonathan; Wu, Xueyuan
    • Figshare-Supplementary information for journal article at DOI: 10.1364/OE.24.025189, 1 MP4 file (2.48 MB)
    • DOI: 10.6084/m9.figshare.c.3766259

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.