skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of ion velocity separation and ionization in multi-species plasma shocks

Abstract

The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks (M ~ 6) propagating through low-density (ρ ~ 0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. In conclusion, the forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [3];  [3]; ORCiD logo [3];  [3]; ORCiD logo [3];  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Lab. for Laser Energetics, Rochester, NY (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1466929
Alternate Identifier(s):
OSTI ID: 1438282
Report Number(s):
LLNL-JRNL-755384
Journal ID: ISSN 1070-664X; 942267
Grant/Contract Number:  
AC52-07NA27344; AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Rinderknecht, Hans G., Park, H. -S., Ross, J. S., Amendt, P. A., Wilks, S. C., Katz, J., Hoffman, N. M., Kagan, G., Vold, E. L., Keenan, B. D., Simakov, A. N., and Chacón, L.. Measurements of ion velocity separation and ionization in multi-species plasma shocks. United States: N. p., 2018. Web. doi:10.1063/1.5023383.
Rinderknecht, Hans G., Park, H. -S., Ross, J. S., Amendt, P. A., Wilks, S. C., Katz, J., Hoffman, N. M., Kagan, G., Vold, E. L., Keenan, B. D., Simakov, A. N., & Chacón, L.. Measurements of ion velocity separation and ionization in multi-species plasma shocks. United States. doi:10.1063/1.5023383.
Rinderknecht, Hans G., Park, H. -S., Ross, J. S., Amendt, P. A., Wilks, S. C., Katz, J., Hoffman, N. M., Kagan, G., Vold, E. L., Keenan, B. D., Simakov, A. N., and Chacón, L.. Tue . "Measurements of ion velocity separation and ionization in multi-species plasma shocks". United States. doi:10.1063/1.5023383.
@article{osti_1466929,
title = {Measurements of ion velocity separation and ionization in multi-species plasma shocks},
author = {Rinderknecht, Hans G. and Park, H. -S. and Ross, J. S. and Amendt, P. A. and Wilks, S. C. and Katz, J. and Hoffman, N. M. and Kagan, G. and Vold, E. L. and Keenan, B. D. and Simakov, A. N. and Chacón, L.},
abstractNote = {The ion velocity structure of a strong collisional shock front in a plasma with multiple ion species is directly probed in laser-driven shock-tube experiments. Thomson scattering of a 263.25 nm probe beam is used to diagnose ion composition, temperature, and flow velocity in strong shocks (M ~ 6) propagating through low-density (ρ ~ 0.1 mg/cc) plasmas composed of mixtures of hydrogen (98%) and neon (2%). Within the preheat region of the shock front, two velocity populations of ions are observed, a characteristic feature of strong plasma shocks. The ionization state of the Ne is observed to change within the shock front, demonstrating an ionization-timescale effect on the shock front structure. In conclusion, the forward-streaming proton feature is shown to be unexpectedly cool compared to predictions from ion Fokker-Planck simulations; the neon ionization gradient is evaluated as a possible cause.},
doi = {10.1063/1.5023383},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {Tue May 22 00:00:00 EDT 2018},
month = {Tue May 22 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 22, 2019
Publisher's Version of Record

Save / Share: