skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A strongly robust type II Weyl fermion semimetal state in Ta 3S 2

Abstract

Weyl semimetals are of great interest because they provide the first realization of the Weyl fermion, exhibit exotic quantum anomalies, and host Fermi arc surface states. The separation between Weyl nodes of opposite chirality gives a measure of the robustness of the Weyl semimetal state. To exploit the novel phenomena that arise from Weyl fermions in applications, it is crucially important to find robust separated Weyl nodes. Here, we propose a methodology to design robust Weyl semimetals with well-separated Weyl nodes. Using this methodology as a guideline, we search among the material parameter space and identify by far the most robust and ideal Weyl semimetal candidate in the single-crystalline compound tantalum sulfide (Ta 3S 2) with new and novel properties beyond TaAs. Crucially, our results show that Ta 3S 2 has the largest k-space separation between Weyl nodes among known Weyl semimetal candidates, which is about twice larger than the measured value in TaAs and 20 times larger than the predicted value in WTe 2. Moreover, all Weyl nodes in Ta 3S 2 are of type II. Therefore, Ta 3S 2 is a type II Weyl semimetal. Furthermore, we predict that increasing the lattice by <4% can annihilate all Weylmore » nodes, driving a novel topological metal-to-insulator transition from a Weyl semimetal state to a topological insulator state. The robust type II Weyl semimetal state and the topological metal-to-insulator transition in Ta 3S 2 are potentially useful in device applications. Our methodology can be generally applied to search for new Weyl semimetals.« less

Authors:
 [1];  [2];  [2];  [1];  [1];  [3];  [2];  [2];  [2];  [2];  [4];  [5];  [1];  [2]
  1. National Univ. of Singapore (Singapore). Center for Advanced 2D Materials and Graphene Research Center and Dept. of Physics
  2. Princeton Univ., NJ (United States). Lab. for Topological Quantum Matter and Spectroscopy and Dept. of Physics
  3. Princeton Univ., NJ (United States). Lab. for Topological Quantum Matter and Spectroscopy and Dept. of Physics; National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Physics
  4. National Tsing Hua Univ., Hsinchu (Taiwan). Dept. of Physics; Academia Sinica, Taipei (Taiwan). Inst. of Physics
  5. Northeastern Univ., Boston, MA (United States). Dept. of Physics
Publication Date:
Research Org.:
Northeastern Univ., Boston, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); National Research Foundation of Korea (NRF); National Science Council (NSC); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); ordon and Betty Moore Foundation
OSTI Identifier:
1466571
Grant/Contract Number:  
FG02-07ER46352; FG-02-05ER46200; NRF-NRFF2013-03; AC02-05CH11231; GBMF4547
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 2; Journal Issue: 6; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Weyl fermion; Fermi arc; Topology

Citation Formats

Chang, Guoqing, Xu, Su-Yang, Sanchez, Daniel S., Huang, Shin-Ming, Lee, Chi-Cheng, Chang, Tay-Rong, Bian, Guang, Zheng, Hao, Belopolski, Ilya, Alidoust, Nasser, Jeng, Horng-Tay, Bansil, Arun, Lin, Hsin, and Hasan, M. Zahid. A strongly robust type II Weyl fermion semimetal state in Ta3S2. United States: N. p., 2016. Web. doi:10.1126/sciadv.1600295.
Chang, Guoqing, Xu, Su-Yang, Sanchez, Daniel S., Huang, Shin-Ming, Lee, Chi-Cheng, Chang, Tay-Rong, Bian, Guang, Zheng, Hao, Belopolski, Ilya, Alidoust, Nasser, Jeng, Horng-Tay, Bansil, Arun, Lin, Hsin, & Hasan, M. Zahid. A strongly robust type II Weyl fermion semimetal state in Ta3S2. United States. doi:10.1126/sciadv.1600295.
Chang, Guoqing, Xu, Su-Yang, Sanchez, Daniel S., Huang, Shin-Ming, Lee, Chi-Cheng, Chang, Tay-Rong, Bian, Guang, Zheng, Hao, Belopolski, Ilya, Alidoust, Nasser, Jeng, Horng-Tay, Bansil, Arun, Lin, Hsin, and Hasan, M. Zahid. Fri . "A strongly robust type II Weyl fermion semimetal state in Ta3S2". United States. doi:10.1126/sciadv.1600295. https://www.osti.gov/servlets/purl/1466571.
@article{osti_1466571,
title = {A strongly robust type II Weyl fermion semimetal state in Ta3S2},
author = {Chang, Guoqing and Xu, Su-Yang and Sanchez, Daniel S. and Huang, Shin-Ming and Lee, Chi-Cheng and Chang, Tay-Rong and Bian, Guang and Zheng, Hao and Belopolski, Ilya and Alidoust, Nasser and Jeng, Horng-Tay and Bansil, Arun and Lin, Hsin and Hasan, M. Zahid},
abstractNote = {Weyl semimetals are of great interest because they provide the first realization of the Weyl fermion, exhibit exotic quantum anomalies, and host Fermi arc surface states. The separation between Weyl nodes of opposite chirality gives a measure of the robustness of the Weyl semimetal state. To exploit the novel phenomena that arise from Weyl fermions in applications, it is crucially important to find robust separated Weyl nodes. Here, we propose a methodology to design robust Weyl semimetals with well-separated Weyl nodes. Using this methodology as a guideline, we search among the material parameter space and identify by far the most robust and ideal Weyl semimetal candidate in the single-crystalline compound tantalum sulfide (Ta3S2) with new and novel properties beyond TaAs. Crucially, our results show that Ta3S2 has the largest k-space separation between Weyl nodes among known Weyl semimetal candidates, which is about twice larger than the measured value in TaAs and 20 times larger than the predicted value in WTe2. Moreover, all Weyl nodes in Ta3S2 are of type II. Therefore, Ta3S2 is a type II Weyl semimetal. Furthermore, we predict that increasing the lattice by <4% can annihilate all Weyl nodes, driving a novel topological metal-to-insulator transition from a Weyl semimetal state to a topological insulator state. The robust type II Weyl semimetal state and the topological metal-to-insulator transition in Ta3S2 are potentially useful in device applications. Our methodology can be generally applied to search for new Weyl semimetals.},
doi = {10.1126/sciadv.1600295},
journal = {Science Advances},
issn = {2375-2548},
number = 6,
volume = 2,
place = {United States},
year = {2016},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 61 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Colloquium: Topological insulators
journal, November 2010


Topological insulators and superconductors
journal, October 2011


Three-Dimensional Topological Insulators
journal, March 2011


Elektron und Gravitation. I
journal, May 1929


Accidental Degeneracy in the Energy Bands of Crystals
journal, August 1937


Some properties of gapless semiconductors of the second kind
journal, August 1971

  • Abrikosov, A. A.; Beneslavskii, S. D.
  • Journal of Low Temperature Physics, Vol. 5, Issue 2
  • DOI: 10.1007/BF00629569

The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal
journal, November 1983


Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates
journal, May 2011


Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates
journal, August 2011


Weyl Semimetal in a Topological Insulator Multilayer
journal, September 2011


Observation of Fermi arc surface states in a topological metal
journal, December 2014


A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373

Discovery of a Weyl fermion semimetal and topological Fermi arcs
journal, July 2015


Experimental observation of Weyl points
journal, July 2015


Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal
journal, February 2016

  • Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10735

Time-reversal-invariant topological superconductivity in doped Weyl semimetals
journal, July 2014


Superconductivity in Weyl metals
journal, July 2015


Observation of Weyl nodes in TaAs
journal, August 2015

  • Lv, B. Q.; Xu, N.; Weng, H. M.
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3426

Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs
journal, October 2015

  • Yang, L. X.; Liu, Z. K.; Sun, Y.
  • Nature Physics, Vol. 11, Issue 10
  • DOI: 10.1038/nphys3493

Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide
journal, August 2015

  • Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya
  • Nature Physics, Vol. 11, Issue 9
  • DOI: 10.1038/nphys3437

Experimental discovery of a topological Weyl semimetal state in TaP
journal, November 2015

  • Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.
  • Science Advances, Vol. 1, Issue 10
  • DOI: 10.1126/sciadv.1501092

Observation of Weyl nodes and Fermi arcs in tantalum phosphide
journal, March 2016

  • Xu, N.; Weng, H. M.; Lv, B. Q.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11006

Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP
journal, September 2015


Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals
journal, February 2016


Direct observation of nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP
journal, April 2016


Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family
journal, November 2015

  • Liu, Z. K.; Yang, L. X.; Sun, Y.
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4457

Atomic-Scale Visualization of Quantum Interference on a Weyl Semimetal Surface by Scanning Tunneling Microscopy
journal, December 2015


Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2
journal, February 2016

  • Chang, Tay-Rong; Xu, Su-Yang; Chang, Guoqing
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10639

Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions
journal, March 2016


Single-crystal structure of tantalum sulfide (Ta3S2). Structure and bonding in the Ta6Sn (n = 1,3,4,5?) pentagonal-antiprismatic chain compounds
journal, January 1991

  • Kim, Sung Jin.; Nanjundaswamy, K. S.; Hughbanks, Timothy.
  • Inorganic Chemistry, Vol. 30, Issue 2
  • DOI: 10.1021/ic00002a004

Galvanomagnetic Properties of Ta 3 S 2 , Ta 2 S and Ta 6 S
journal, October 1991

  • Nozaki, Hiroshi; Wada, Hiroaki; Takekawa, Shunji
  • Journal of the Physical Society of Japan, Vol. 60, Issue 10
  • DOI: 10.1143/JPSJ.60.3510

Weyl semimetals from noncentrosymmetric topological insulators
journal, October 2014


Weak Topological Insulators and Composite Weyl Semimetals: β Bi 4 X 4 ( X = Br , I)
journal, February 2016


Discrete plasticity in sub-10-nm-sized gold crystals
journal, December 2010

  • Zheng, He; Cao, Ajing; Weinberger, Christopher R.
  • Nature Communications, Vol. 1, Issue 1
  • DOI: 10.1038/ncomms1149

Variationally optimized atomic orbitals for large-scale electronic structures
journal, April 2003


Self-consistent treatment of spin-orbit coupling in solids using relativistic fully separable ab initio pseudopotentials
journal, July 2001


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

    Works referencing / citing this record:

    Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ 2 , Q = Se, Te
    journal, January 2017

    • Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama
    • Dalton Transactions, Vol. 46, Issue 48
    • DOI: 10.1039/c7dt03446f

    Exploring Topological Superconductivity in Topological Materials
    journal, July 2019


    Universal optical conductivity of a disordered Weyl semimetal
    journal, August 2016

    • Roy, Bitan; Juričić, Vladimir; Das Sarma, Sankar
    • Scientific Reports, Vol. 6, Issue 1
    • DOI: 10.1038/srep32446

    Exploring Topological Superconductivity in Topological Materials
    journal, July 2019


    Universal optical conductivity of a disordered Weyl semimetal
    journal, August 2016

    • Roy, Bitan; Juričić, Vladimir; Das Sarma, Sankar
    • Scientific Reports, Vol. 6, Issue 1
    • DOI: 10.1038/srep32446

    Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ 2 , Q = Se, Te
    journal, January 2017

    • Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama
    • Dalton Transactions, Vol. 46, Issue 48
    • DOI: 10.1039/c7dt03446f