skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes

Abstract

Abstract Hard carbon as a typical anode material for sodium ion batteries has received much attention in terms of its low cost and renewability. Herein, phosphorus‐functionalized hard carbon with a specific “honeycomb briquette” shaped morphology is synthesized via electrospinning technology. When applied as an anode material for Na + storage, it exhibits an impressively high reversible capacity of 393.4 mA h g −1 with the capacity retention up to 98.2% after 100 cycles. According to first‐principle calculation, the ultrahigh capacity of the as‐prepared anode is ascribed to the enhancement of Na‐absorption through formation of PO and PC bonds in graphitic layers when doped with phosphorus. Moreover, the increase of electron density around the Fermi level is found to be mainly caused by O atoms instead of P atoms.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [3];  [2];  [3]; ORCiD logo [2]
  1. Beijing Institute of Technology, Beijing (People's Republic of China)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Beijing Institute of Technology, Beijing (People's Republic of China); Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing (People's Republic of China)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); National Basic Research Program of China; USDOE
OSTI Identifier:
1466401
Alternate Identifier(s):
OSTI ID: 1423911
Grant/Contract Number:  
AC02-06CH11357; DE‐AC02‐06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 18; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; first-principle calculations; hard carbon; phosphorous-functionalization; sodium ion batteries; ultrahigh capacity

Citation Formats

Li, Yu, Yuan, Yifei, Bai, Ying, Liu, Yuanchang, Wang, Zhaohua, Li, Limin, Wu, Feng, Amine, Khalil, Wu, Chuan, and Lu, Jun. Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes. United States: N. p., 2018. Web. doi:10.1002/aenm.201702781.
Li, Yu, Yuan, Yifei, Bai, Ying, Liu, Yuanchang, Wang, Zhaohua, Li, Limin, Wu, Feng, Amine, Khalil, Wu, Chuan, & Lu, Jun. Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes. United States. https://doi.org/10.1002/aenm.201702781
Li, Yu, Yuan, Yifei, Bai, Ying, Liu, Yuanchang, Wang, Zhaohua, Li, Limin, Wu, Feng, Amine, Khalil, Wu, Chuan, and Lu, Jun. 2018. "Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes". United States. https://doi.org/10.1002/aenm.201702781. https://www.osti.gov/servlets/purl/1466401.
@article{osti_1466401,
title = {Insights into the Na+ Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes},
author = {Li, Yu and Yuan, Yifei and Bai, Ying and Liu, Yuanchang and Wang, Zhaohua and Li, Limin and Wu, Feng and Amine, Khalil and Wu, Chuan and Lu, Jun},
abstractNote = {Abstract Hard carbon as a typical anode material for sodium ion batteries has received much attention in terms of its low cost and renewability. Herein, phosphorus‐functionalized hard carbon with a specific “honeycomb briquette” shaped morphology is synthesized via electrospinning technology. When applied as an anode material for Na + storage, it exhibits an impressively high reversible capacity of 393.4 mA h g −1 with the capacity retention up to 98.2% after 100 cycles. According to first‐principle calculation, the ultrahigh capacity of the as‐prepared anode is ascribed to the enhancement of Na‐absorption through formation of PO and PC bonds in graphitic layers when doped with phosphorus. Moreover, the increase of electron density around the Fermi level is found to be mainly caused by O atoms instead of P atoms.},
doi = {10.1002/aenm.201702781},
url = {https://www.osti.gov/biblio/1466401}, journal = {Advanced Energy Materials},
issn = {1614-6832},
number = 18,
volume = 8,
place = {United States},
year = {Tue Mar 06 00:00:00 EST 2018},
month = {Tue Mar 06 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 174 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: a) Schematic diagram of the synthesis of hard carbon anodes by electrospinning method, b) SEM images of HC-P15 precursor, c) magnified SEM image of sample HC-P15, d-e) EDX elemental distribution mapping of sample HC-P15 basde on c). HRTEM images of f) sample HC and g) sample HC-P15, themore » insets show the SAED pictures of corresponding samples.« less

Save / Share:

Works referenced in this record:

Thermal behaviour of lignocellulosic material in the presence of phosphoric acid. Influence of the acid content in the initial solution
journal, September 2006


Issues and challenges facing rechargeable lithium batteries
journal, November 2001


Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism
journal, December 2012


Enhanced Sodium Ion Storage Behavior of P2-Type Na 2/3 Fe 1/2 Mn 1/2 O 2 Synthesized via a Chelating Agent Assisted Route
journal, January 2016


High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
journal, January 2000


Correlation Between Microstructure and Na Storage Behavior in Hard Carbon
journal, November 2015


Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems
journal, November 2014


Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent
journal, January 2015


Effects of H3PO4 and KOH in carbonization of lignocellulosic material
journal, November 2008


Engineering Hierarchical Hollow Nickel Sulfide Spheres for High-Performance Sodium Storage
journal, September 2016


Influence of micropore structure on Li-storage capacity in hard carbon spherules
journal, March 2005


A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
journal, September 2015


High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network
journal, January 2016


Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries
journal, January 2016


Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals
journal, March 2016


Vanadium Clustering/Declustering in P2–Na 1/2 VO 2 Layered Oxide
journal, February 2014


High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping
journal, July 2016


High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications
journal, January 2012


Amorphous TiO 2 Nanotube Anode for Rechargeable Sodium Ion Batteries
journal, September 2011


The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015


High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels
journal, June 2014


Polyanion-Type Electrode Materials for Sodium-Ion Batteries
journal, January 2017


Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery
journal, February 2015


Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes
journal, November 2013


MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes
journal, January 2014


Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry
journal, May 2016


A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries
journal, January 2015


Nitrogen-Doped Porous Carbon Nanosheets as Low-Cost, High-Performance Anode Material for Sodium-Ion Batteries
journal, December 2012


Sodium-Ion Batteries
journal, May 2012


P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012


Is lithium the new gold?
journal, June 2010


High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
journal, March 2013


Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
journal, June 2012


New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
journal, August 2015


A high performance sulfur-doped disordered carbon anode for sodium ion batteries
journal, January 2015


Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance
journal, January 2016


The Mechanisms of Lithium and Sodium Insertion in Carbon Materials
journal, January 2001


Sodium-Ion Batteries
journal, June 2018


High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
journal, March 2013


Works referencing / citing this record:

Surface‐Driven Energy Storage Behavior of Dual‐Heteroatoms Functionalized Carbon Material
journal, February 2019


TiS 2 as an Advanced Conversion Electrode for Sodium-Ion Batteries with Ultra-High Capacity and Long-Cycle Life
journal, September 2018


Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges
journal, November 2018


Freestanding N‐Doped Carbon Coated CuO Array Anode for Lithium‐Ion and Sodium‐Ion Batteries
journal, May 2019


Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery
journal, September 2019


Tunable porous carbon spheres for high-performance rechargeable batteries
journal, January 2018


Facile synthesis of N,O-codoped hard carbon on the kilogram scale for fast capacitive sodium storage
journal, January 2018


Nano-embedded microstructured FeS 2 @C as a high capacity and cycling-stable Na-storage anode in an optimized ether-based electrolyte
journal, January 2018


A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage
journal, January 2019


Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries
journal, January 2019


Sodium storage properties of thin phosphorus-doped graphene layers developed on the surface of nanodiamonds under hot pressing conditions
journal, January 2020


Hard carbon anode materials for sodium-ion batteries
journal, December 2018


Conductive carbon nanofiber interpenetrated graphene architecture for ultra-stable sodium ion battery
journal, September 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.