skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide

Abstract

Lithium-oxygen (Li-O 2 ) batteries have attracted much attention owing to the high theoretical energy density afforded by the two-electron reduction of O 2 to lithium peroxide (Li 2 O 2 ). We report an inorganic-electrolyte Li-O 2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li 2 O). It relies on a bifunctional metal oxide host that catalyzes O–O bond cleavage on discharge, yielding a high capacity of 11 milliampere-hours per square centimeter, and O 2 evolution on charge with very low overpotential. Online mass spectrometry and chemical quantification confirm that oxidation of Li 2 O involves transfer of exactly 4 e /O 2 . This work shows that Li-O 2 electrochemistry is not intrinsically limited once problems of electrolyte, superoxide, and cathode host are overcome and that coulombic efficiency close to 100% can be achieved.

Authors:
ORCiD logo; ORCiD logo; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1466084
Grant/Contract Number:  
Office of Basic Sciences (JCESR)
Resource Type:
Journal Article: Published Article
Journal Name:
Science
Additional Journal Information:
Journal Name: Science Journal Volume: 361 Journal Issue: 6404; Journal ID: ISSN 0036-8075
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English

Citation Formats

Xia, C., Kwok, C. Y., and Nazar, L. F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. United States: N. p., 2018. Web. doi:10.1126/science.aas9343.
Xia, C., Kwok, C. Y., & Nazar, L. F. A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide. United States. doi:10.1126/science.aas9343.
Xia, C., Kwok, C. Y., and Nazar, L. F. Thu . "A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide". United States. doi:10.1126/science.aas9343.
@article{osti_1466084,
title = {A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide},
author = {Xia, C. and Kwok, C. Y. and Nazar, L. F.},
abstractNote = {Lithium-oxygen (Li-O 2 ) batteries have attracted much attention owing to the high theoretical energy density afforded by the two-electron reduction of O 2 to lithium peroxide (Li 2 O 2 ). We report an inorganic-electrolyte Li-O 2 cell that cycles at an elevated temperature via highly reversible four-electron redox to form crystalline lithium oxide (Li 2 O). It relies on a bifunctional metal oxide host that catalyzes O–O bond cleavage on discharge, yielding a high capacity of 11 milliampere-hours per square centimeter, and O 2 evolution on charge with very low overpotential. Online mass spectrometry and chemical quantification confirm that oxidation of Li 2 O involves transfer of exactly 4 e – /O 2 . This work shows that Li-O 2 electrochemistry is not intrinsically limited once problems of electrolyte, superoxide, and cathode host are overcome and that coulombic efficiency close to 100% can be achieved.},
doi = {10.1126/science.aas9343},
journal = {Science},
issn = {0036-8075},
number = 6404,
volume = 361,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1126/science.aas9343

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electron-, x-ray-, and ion-stimulated decomposition of nitrate salts
journal, April 1986

  • Aduru, Subhodaya; Contarini, Salvatore; Rabalais, J. Wayne
  • The Journal of Physical Chemistry, Vol. 90, Issue 8
  • DOI: 10.1021/j100399a045

A Molten Salt Lithium–Oxygen Battery
journal, February 2016

  • Giordani, Vincent; Tozier, Dylan; Tan, Hongjin
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b11744

A Reversible and Higher-Rate Li-O2 Battery
journal, July 2012


On the Thermodynamics, the Role of the Carbon Cathode, and the Cycle Life of the Sodium Superoxide (NaO 2 ) Battery
journal, April 2014

  • Bender, Conrad L.; Hartmann, Pascal; Vračar, Miloš
  • Advanced Energy Materials, Vol. 4, Issue 12
  • DOI: 10.1002/aenm.201301863

Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


A lithium–oxygen battery based on lithium superoxide
journal, January 2016

  • Lu, Jun; Jung Lee, Yun; Luo, Xiangyi
  • Nature, Vol. 529, Issue 7586, p. 377-382
  • DOI: 10.1038/nature16484

Hydrogen Peroxide Production in the Oxygen Reduction Reaction at Different Electrocatalysts as Quantified by Scanning Electrochemical Microscopy
journal, October 2009

  • Sánchez-Sánchez, Carlos M.; Bard, Allen J.
  • Analytical Chemistry, Vol. 81, Issue 19
  • DOI: 10.1021/ac901291v

An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries
journal, December 2015

  • Welland, Michael J.; Lau, Kah Chun; Redfern, Paul C.
  • The Journal of Chemical Physics, Vol. 143, Issue 22
  • DOI: 10.1063/1.4936410

Promoting solution phase discharge in Li–O2 batteries containing weakly solvating electrolyte solutions
journal, April 2016

  • Gao, Xiangwen; Chen, Yuhui; Johnson, Lee
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4629

Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery
journal, August 2014

  • Adams, Brian D.; Black, Robert; Williams, Zack
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400867

Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method
journal, January 2013


A concise guide to sustainable PEMFCs: recent advances in improving both oxygen reduction catalysts and proton exchange membranes
journal, January 2015

  • Scofield, Megan E.; Liu, Haiqing; Wong, Stanislaus S.
  • Chemical Society Reviews, Vol. 44, Issue 16
  • DOI: 10.1039/C5CS00302D

Discharge and Charge Reaction Paths in Sodium–Oxygen Batteries: Does NaO 2 Form by Direct Electrochemical Growth or by Precipitation from Solution?
journal, September 2015

  • Hartmann, Pascal; Heinemann, Markus; Bender, Conrad L.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 40
  • DOI: 10.1021/acs.jpcc.5b06007

Electronic Structure of Lithium Nickel Oxides by Electron Energy Loss Spectroscopy
journal, June 2005

  • Koyama, Yukinori; Mizoguchi, Teruyasu; Ikeno, Hidekazu
  • The Journal of Physical Chemistry B, Vol. 109, Issue 21
  • DOI: 10.1021/jp050486b

Surface science studies of model fuel cell electrocatalysts
journal, April 2002


Thermal Stability of Li 2 O 2 and Li 2 O for Li-Air Batteries: In Situ XRD and XPS Studies
journal, January 2013

  • Yao, Koffi P. C.; Kwabi, David G.; Quinlan, Ronald A.
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.069306jes

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Surface properties of LiCoO2, LiNiO2 and LiNi1−xCoxO2
journal, March 2007


Characterization of LiNiO 2 by XPS
journal, July 1994


A rechargeable room-temperature sodium superoxide (NaO2) battery
journal, December 2012

  • Hartmann, Pascal; Bender, Conrad L.; Vračar, Miloš
  • Nature Materials, Vol. 12, Issue 3, p. 228-232
  • DOI: 10.1038/nmat3486

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

LithiumOxygen Electrochemistry in Non-Aqueous Solutions
journal, February 2015

  • Sharon, Daniel; Hirshberg, Daniel; Afri, Michal
  • Israel Journal of Chemistry, Vol. 55, Issue 5
  • DOI: 10.1002/ijch.201400135

Implications of 4 e Oxygen Reduction via Iodide Redox Mediation in Li–O 2 Batteries
journal, September 2016


Lithium–oxygen batteries: bridging mechanistic understanding and battery performance
journal, January 2013

  • Lu, Yi-Chun; Gallant, Betar M.; Kwabi, David G.
  • Energy & Environmental Science, Vol. 6, Issue 3
  • DOI: 10.1039/c3ee23966g

The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries
journal, May 2015

  • Xia, Chun; Black, Robert; Fernandes, Russel
  • Nature Chemistry, Vol. 7, Issue 6
  • DOI: 10.1038/nchem.2260

Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes
journal, October 2013

  • Hartmann, Pascal; Leichtweiss, Thomas; Busche, Martin R.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 41
  • DOI: 10.1021/jp4051275

Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries
journal, June 2011

  • Suntivich, Jin; Gasteiger, Hubert A.; Yabuuchi, Naoaki
  • Nature Chemistry, Vol. 3, Issue 7, p. 546-550
  • DOI: 10.1038/nchem.1069

Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge
journal, January 2013

  • Adams, Brian D.; Radtke, Claudio; Black, Robert
  • Energy & Environmental Science, Vol. 6, Issue 6
  • DOI: 10.1039/c3ee40697k

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries
journal, December 2014

  • Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.
  • Nature Chemistry, Vol. 7, Issue 1
  • DOI: 10.1038/nchem.2132

Combining theory and experiment in electrocatalysis: Insights into materials design
journal, January 2017


X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment
journal, June 1974


Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries
journal, August 2016

  • Xia, Chun; Fernandes, Russel; Cho, Franklin H.
  • Journal of the American Chemical Society, Vol. 138, Issue 35
  • DOI: 10.1021/jacs.6b05382

Cycling Li-O2 batteries via LiOH formation and decomposition
journal, October 2015


Chemical Instability of Dimethyl Sulfoxide in Lithium–Air Batteries
journal, August 2014

  • Kwabi, David G.; Batcho, Thomas P.; Amanchukwu, Chibueze V.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 16
  • DOI: 10.1021/jz5013824