Design and measurement methods for a lithium vapor box similarity experiment
Abstract
Here, the lithium vapor box divertor is a concept for handling the extreme divertor heat fluxes in magnetic fusion devices. In a baffled slot divertor, plasma interacts with a dense cloud of Li vapor which radiates and cools the plasma, leading to recombination and detachment. Before testing on a tokamak, the concept should be validated: we plan to study detachment and heat redistribution by a Li vapor cloud in laboratory experiments. Mass changes and temperatures are measured to validate a direct simulation Monte Carlo model of neutral Li. The initial experiment involves a 5 cm diameter steel box containing 10 g of Li held at 650 °C as vapor flows out a wide nozzle into a similarly sized box at a lower temperature. Diagnosis is made challenging by the required material compatibility with lithium vapor. Vapor pressure is a steep function of temperature, so to validate mass flow models to within 10%, absolute temperature to within 4.5 K is required. The apparatus is designed to be used with an analytical balance to determine mass transport. Details of the apparatus and methods of temperature and mass flow measurements are presented.
- Authors:
-
- Princeton Univ., Princeton, NJ (United States)
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
- Publication Date:
- Research Org.:
- Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1465999
- Alternate Identifier(s):
- OSTI ID: 1463940
- Grant/Contract Number:
- AC02-09CH11466
- Resource Type:
- Journal Article: Accepted Manuscript
- Journal Name:
- Review of Scientific Instruments
- Additional Journal Information:
- Journal Volume: 89; Journal Issue: 10; Journal ID: ISSN 0034-6748
- Publisher:
- American Institute of Physics (AIP)
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; lithium; divertor; detachment; vapor
Citation Formats
Schwartz, J. A., Emdee, E. D., Jaworski, M. A., and Goldston, R. J. Design and measurement methods for a lithium vapor box similarity experiment. United States: N. p., 2018.
Web. doi:10.1063/1.5039406.
Schwartz, J. A., Emdee, E. D., Jaworski, M. A., & Goldston, R. J. Design and measurement methods for a lithium vapor box similarity experiment. United States. https://doi.org/10.1063/1.5039406
Schwartz, J. A., Emdee, E. D., Jaworski, M. A., and Goldston, R. J. Fri .
"Design and measurement methods for a lithium vapor box similarity experiment". United States. https://doi.org/10.1063/1.5039406. https://www.osti.gov/servlets/purl/1465999.
@article{osti_1465999,
title = {Design and measurement methods for a lithium vapor box similarity experiment},
author = {Schwartz, J. A. and Emdee, E. D. and Jaworski, M. A. and Goldston, R. J.},
abstractNote = {Here, the lithium vapor box divertor is a concept for handling the extreme divertor heat fluxes in magnetic fusion devices. In a baffled slot divertor, plasma interacts with a dense cloud of Li vapor which radiates and cools the plasma, leading to recombination and detachment. Before testing on a tokamak, the concept should be validated: we plan to study detachment and heat redistribution by a Li vapor cloud in laboratory experiments. Mass changes and temperatures are measured to validate a direct simulation Monte Carlo model of neutral Li. The initial experiment involves a 5 cm diameter steel box containing 10 g of Li held at 650 °C as vapor flows out a wide nozzle into a similarly sized box at a lower temperature. Diagnosis is made challenging by the required material compatibility with lithium vapor. Vapor pressure is a steep function of temperature, so to validate mass flow models to within 10%, absolute temperature to within 4.5 K is required. The apparatus is designed to be used with an analytical balance to determine mass transport. Details of the apparatus and methods of temperature and mass flow measurements are presented.},
doi = {10.1063/1.5039406},
url = {https://www.osti.gov/biblio/1465999},
journal = {Review of Scientific Instruments},
issn = {0034-6748},
number = 10,
volume = 89,
place = {United States},
year = {2018},
month = {8}
}
Web of Science
Works referenced in this record:
Lithium Vapor Cell and Discharge Lamp Using MgO Windows
journal, September 1971
- Slabinski, Victor J.; Smith, R. Lowell
- Review of Scientific Instruments, Vol. 42, Issue 9
Monte Carlo Simulation of Gas Flows
journal, January 1978
- Bird, G. A.
- Annual Review of Fluid Mechanics, Vol. 10, Issue 1
Operational characteristics of the high flux plasma generator Magnum-PSI
journal, October 2014
- van Eck, H. J. N.; Abrams, T.; van den Berg, M. A.
- Fusion Engineering and Design, Vol. 89, Issue 9-10
Irreversible thermoelectric changes in type K and type N thermocouple alloys within Nicrosil-sheathed MIMS cable
journal, December 1989
- Bentley, R. E.
- Journal of Physics D: Applied Physics, Vol. 22, Issue 12
Sensitivity of detachment extent to magnetic configuration and external parameters
journal, April 2016
- Lipschultz, Bruce; Parra, Felix I.; Hutchinson, Ian H.
- Nuclear Fusion, Vol. 56, Issue 5
Recent advances towards a lithium vapor box divertor
journal, August 2017
- Goldston, R. J.; Hakim, A.; Hammett, G. W.
- Nuclear Materials and Energy, Vol. 12
Thermal conductivity of Inconel 718 and 304 stainless steel
journal, September 1987
- Sweet, J. N.; Roth, E. P.; Moss, M.
- International Journal of Thermophysics, Vol. 8, Issue 5
Plasma detachment in divertor tokamaks
journal, February 2018
- Leonard, A. W.
- Plasma Physics and Controlled Fusion, Vol. 60, Issue 4
Pression de vapeur saturante du lithium entre 462° et 642°
journal, January 1939
- Maucherat, M.
- Journal de Physique et le Radium, Vol. 10, Issue 10
Heat‐Pipe Oven: A New, Well‐Defined Metal Vapor Device for Spectroscopic Measurements
journal, July 1969
- Vidal, C. R.; Cooper, J.
- Journal of Applied Physics, Vol. 40, Issue 8
The lithium vapor box divertor
journal, January 2016
- Goldston, R. J.; Myers, R.; Schwartz, J.
- Physica Scripta, Vol. T167
Evaluation of Vapor‐Pressure Data for Mercury, Lithium, Sodium, and Potassium
journal, April 1963
- Hicks, W. T.
- The Journal of Chemical Physics, Vol. 38, Issue 8
Sorption of atmospheric gases by bulk lithium metal
journal, January 2016
- Hart, C. A.; Skinner, C. H.; Capece, A. M.
- Journal of Nuclear Materials, Vol. 468
Thermoelectric hysteresis in nickel-based thermocouple alloys
journal, December 1989
- Bentley, R. E.
- Journal of Physics D: Applied Physics, Vol. 22, Issue 12
Direct simulation Monte Carlo: The quest for speed
conference, January 2014
- Gallis, Michael A.; Torczynski, John R.; Plimpton, Steven J.
- PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, AIP Conference Proceedings
Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation
journal, November 2010
- Kugel, H. W.; Bell, M. G.; Schneider, H.
- Fusion Engineering and Design, Vol. 85, Issue 6
Design and measurement methods for a lithium vapor box similarity experiment
dataset, January 2018
- Schwartz, J.; Emdee, E.; Jaworski, M.
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Works referencing / citing this record:
Thermal conductivity of Inconel 718 and 304 stainless steel
journal, September 1987
- Sweet, J. N.; Roth, E. P.; Moss, M.
- International Journal of Thermophysics, Vol. 8, Issue 5
Lithium coatings on NSTX plasma facing components and its effects on boundary control, core plasma performance, and operation
journal, November 2010
- Kugel, H. W.; Bell, M. G.; Schneider, H.
- Fusion Engineering and Design, Vol. 85, Issue 6
Operational characteristics of the high flux plasma generator Magnum-PSI
journal, October 2014
- van Eck, H. J. N.; Abrams, T.; van den Berg, M. A.
- Fusion Engineering and Design, Vol. 89, Issue 9-10
Sorption of atmospheric gases by bulk lithium metal
journal, January 2016
- Hart, C. A.; Skinner, C. H.; Capece, A. M.
- Journal of Nuclear Materials, Vol. 468
Recent advances towards a lithium vapor box divertor
journal, August 2017
- Goldston, R. J.; Hakim, A.; Hammett, G. W.
- Nuclear Materials and Energy, Vol. 12
Pression de vapeur saturante du lithium entre 462° et 642°
journal, January 1939
- Maucherat, M.
- Journal de Physique et le Radium, Vol. 10, Issue 10
Heat‐Pipe Oven: A New, Well‐Defined Metal Vapor Device for Spectroscopic Measurements
journal, July 1969
- Vidal, C. R.; Cooper, J.
- Journal of Applied Physics, Vol. 40, Issue 8
Lithium Vapor Cell and Discharge Lamp Using MgO Windows
journal, September 1971
- Slabinski, Victor J.; Smith, R. Lowell
- Review of Scientific Instruments, Vol. 42, Issue 9
Evaluation of Vapor‐Pressure Data for Mercury, Lithium, Sodium, and Potassium
journal, April 1963
- Hicks, W. T.
- The Journal of Chemical Physics, Vol. 38, Issue 8
Direct simulation Monte Carlo: The quest for speed
conference, January 2014
- Gallis, Michael A.; Torczynski, John R.; Plimpton, Steven J.
- PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, AIP Conference Proceedings
Thermoelectric hysteresis in nickel-based thermocouple alloys
journal, December 1989
- Bentley, R. E.
- Journal of Physics D: Applied Physics, Vol. 22, Issue 12
Irreversible thermoelectric changes in type K and type N thermocouple alloys within Nicrosil-sheathed MIMS cable
journal, December 1989
- Bentley, R. E.
- Journal of Physics D: Applied Physics, Vol. 22, Issue 12
Sensitivity of detachment extent to magnetic configuration and external parameters
journal, April 2016
- Lipschultz, Bruce; Parra, Felix I.; Hutchinson, Ian H.
- Nuclear Fusion, Vol. 56, Issue 5
The lithium vapor box divertor
journal, January 2016
- Goldston, R. J.; Myers, R.; Schwartz, J.
- Physica Scripta, Vol. T167
Plasma detachment in divertor tokamaks
journal, February 2018
- Leonard, A. W.
- Plasma Physics and Controlled Fusion, Vol. 60, Issue 4
Monte Carlo Simulation of Gas Flows
journal, January 1978
- Bird, G. A.
- Annual Review of Fluid Mechanics, Vol. 10, Issue 1
Design and measurement methods for a lithium vapor box similarity experiment
dataset, January 2018
- Schwartz, J.; Emdee, E.; Jaworski, M.
- Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)