skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of ambient CO{sub 2} concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase

Abstract

Growth of the R{sub 1} progeny of a tobacco plant (Nicotiana tabacum) transformed with an antisense gene to the small subunit of ribulose-1,5-carboxylase/oxygenase (Rubisco) was analyzed under 330 and 930 {mu}bar of CO{sub 2r} at an irradiance of 1000 {mu}mol quanta m{sup {minus}2} s{sup {minus}1}. Rubisco activity was reduced to 30 to 50% and 13 to 18% of that in the wild type when one and two copies of the antisense gene, respectively, were present in the genome, whereas null plants and wild-type plants had similar phenotypes. At 330 {mu}bar of CO{sub 2} all antisense plants were smaller than the wild type. There was no indication that Rubisco is present in excess in the wild type with respect to growth under high light. Raising ambient CO{sub 2} pressure to 930 {mu}bar caused plants with one copy of the DNA transferred from plasmid to plant genome to achieve the same size as the wild type at 330 {mu}bar, but plants with two copies remained smaller. The authors suggest other intrinsic rate-limiting processes independent of carbohydrate supply were involved. Under plentiful nitrogen supply, reduction in the amount of nitrogen invested in Rubisco was more than compensated for by an increase in leafmore » nitrate. Nitrogen content of organic matter, excluding Rubisco, was unaffected by the antisense gene. In contrast, it was systematically lower at elevated p{sub a} than at normal p{sub a}. Combined with the positive effects of p{sub a} on growth, this resulted in the single-dose antisense plants growing as fast at 930 {mu}bar of CO{sub 2} as the wild-type plants at 330 {mu}bar of CO{sub 2} but at a lower organic nitrogen cost.« less

Authors:
; ;  [1]
  1. Australian National Univ., Canberra (Australia)
Publication Date:
OSTI Identifier:
146528
Resource Type:
Journal Article
Journal Name:
Plant Physiology (Bethesda)
Additional Journal Information:
Journal Volume: 103; Journal Issue: 4; Other Information: PBD: Dec 1993
Country of Publication:
United States
Language:
English
Subject:
56 BIOLOGY AND MEDICINE, APPLIED STUDIES; 55 BIOLOGY AND MEDICINE, BASIC STUDIES; CARBON DIOXIDE; BIOLOGICAL EFFECTS; ECOLOGICAL CONCENTRATION; NICOTIANA; PLANT GROWTH; RIBULOSE; VARIATIONS; NITROGEN

Citation Formats

Masle, J, Hudson, G S, and Badger, M R. Effects of ambient CO{sub 2} concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase. United States: N. p., 1993. Web.
Masle, J, Hudson, G S, & Badger, M R. Effects of ambient CO{sub 2} concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase. United States.
Masle, J, Hudson, G S, and Badger, M R. Wed . "Effects of ambient CO{sub 2} concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase". United States.
@article{osti_146528,
title = {Effects of ambient CO{sub 2} concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) plants transformed with an antisense gene to the small subunit of ribulose-1,5-biphosphate carboxylase/oxygenase},
author = {Masle, J and Hudson, G S and Badger, M R},
abstractNote = {Growth of the R{sub 1} progeny of a tobacco plant (Nicotiana tabacum) transformed with an antisense gene to the small subunit of ribulose-1,5-carboxylase/oxygenase (Rubisco) was analyzed under 330 and 930 {mu}bar of CO{sub 2r} at an irradiance of 1000 {mu}mol quanta m{sup {minus}2} s{sup {minus}1}. Rubisco activity was reduced to 30 to 50% and 13 to 18% of that in the wild type when one and two copies of the antisense gene, respectively, were present in the genome, whereas null plants and wild-type plants had similar phenotypes. At 330 {mu}bar of CO{sub 2} all antisense plants were smaller than the wild type. There was no indication that Rubisco is present in excess in the wild type with respect to growth under high light. Raising ambient CO{sub 2} pressure to 930 {mu}bar caused plants with one copy of the DNA transferred from plasmid to plant genome to achieve the same size as the wild type at 330 {mu}bar, but plants with two copies remained smaller. The authors suggest other intrinsic rate-limiting processes independent of carbohydrate supply were involved. Under plentiful nitrogen supply, reduction in the amount of nitrogen invested in Rubisco was more than compensated for by an increase in leaf nitrate. Nitrogen content of organic matter, excluding Rubisco, was unaffected by the antisense gene. In contrast, it was systematically lower at elevated p{sub a} than at normal p{sub a}. Combined with the positive effects of p{sub a} on growth, this resulted in the single-dose antisense plants growing as fast at 930 {mu}bar of CO{sub 2} as the wild-type plants at 330 {mu}bar of CO{sub 2} but at a lower organic nitrogen cost.},
doi = {},
url = {https://www.osti.gov/biblio/146528}, journal = {Plant Physiology (Bethesda)},
number = 4,
volume = 103,
place = {United States},
year = {1993},
month = {12}
}