skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linear and nonlinear soil-structure interaction analysis of buildings and safety-related nuclear structures

Journal Article · · Soil Dynamics and Earthquake Engineering

Soil-structure interaction (SSI) analysis is generally a required step in the calculation of seismic demands in nuclear structures, and is currently performed using linear methods in the frequency domain. Such methods should result in accurate predictions of response for low-intensity shaking, but their adequacy for extreme shaking that results in highly nonlinear soil, structure or foundation response is unproven. Nonlinear (time-domain) SSI analysis can be employed for these cases, but is rarely performed due to a lack of experience on the part of analysts, engineers and regulators. A nonlinear, time-domain SSI analysis procedure using a commercial finite-element code is described in the paper. It is benchmarked against the frequency-domain code, SASSI, for linear SSI analysis and low intensity earthquake shaking. Nonlinear analysis using the time-domain finite-element code, LS-DYNA, is described and results are compared with those from equivalent-linear analysis in SASSI for high intensity shaking. The equivalent-linear and nonlinear responses are significantly different. For intense shaking, the nonlinear effects, including gapping, sliding and uplift, are greatest in the immediate vicinity of the soil-structure boundary, and these cannot be captured using equivalent-linear techniques.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
DE-AC07-05ID14517
OSTI ID:
1464770
Report Number(s):
INL/JOU-15-35160; PII: S0267726118300289
Journal Information:
Soil Dynamics and Earthquake Engineering, Vol. 107, Issue C; ISSN 0267-7261
Country of Publication:
United States
Language:
English