skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling

Abstract

The development of sodium-ion batteries has drawn lots of attention recently due to the low-cost and eco-friendly sodium source. However, a fundamental understanding of the sodiation behavior for commonly used electrode materials is still limited. Here, combining in situ transmission electron microscopy, aberration-corrected scanning transmission electron microscopy, and ex situ battery cycling tests, the lithiation and sodiation behavior of ZnO nanowires is investigated. The findings show a direct correlation between the mechanical behavior of the lithiated/sodiated ZnO nanowires and their electrochemical cyclability. The mechanical brittleness of LiZn and the formation of nanocracks lead to the poor cyclability of Li-ion batteries with a ZnO anode. However, the sodiated ZnO nanowires show profuse dislocation plasticity. The observed high-density dislocations offer the sodiated ZnO anode more ductility and subsequently better cyclability than its Li-ion counterpart. The results reveal the importance of understanding the correlation between mechanical properties of battery electrodes and their cycling abilities.

Authors:
 [1];  [1];  [2];  [3];  [2]; ORCiD logo [2];  [3]
  1. Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Dr. Houghton MI 49933-1295 USA
  2. Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue Argonne IL 60439 USA
  3. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street Chicago IL 60607-7059 USA
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Energy Efficiency and Renewable Energy (EERE) - Office of Vehicle Technology
OSTI Identifier:
1462720
DOE Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article
Journal Name:
Small Methods
Additional Journal Information:
Journal Volume: 1; Journal Issue: 9; Journal ID: ISSN 2366-9608
Publisher:
Wiley
Country of Publication:
United States
Language:
English

Citation Formats

Asayesh-Ardakani, Hasti, Yao, Wentao, Yuan, Yifei, Nie, Anmin, Amine, Khalil, Lu, Jun, and Shahbazian-Yassar, Reza. In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling. United States: N. p., 2017. Web. doi:10.1002/smtd.201700202.
Asayesh-Ardakani, Hasti, Yao, Wentao, Yuan, Yifei, Nie, Anmin, Amine, Khalil, Lu, Jun, & Shahbazian-Yassar, Reza. In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling. United States. doi:10.1002/smtd.201700202.
Asayesh-Ardakani, Hasti, Yao, Wentao, Yuan, Yifei, Nie, Anmin, Amine, Khalil, Lu, Jun, and Shahbazian-Yassar, Reza. Tue . "In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling". United States. doi:10.1002/smtd.201700202.
@article{osti_1462720,
title = {In Situ TEM Investigation of ZnO Nanowires during Sodiation and Lithiation Cycling},
author = {Asayesh-Ardakani, Hasti and Yao, Wentao and Yuan, Yifei and Nie, Anmin and Amine, Khalil and Lu, Jun and Shahbazian-Yassar, Reza},
abstractNote = {The development of sodium-ion batteries has drawn lots of attention recently due to the low-cost and eco-friendly sodium source. However, a fundamental understanding of the sodiation behavior for commonly used electrode materials is still limited. Here, combining in situ transmission electron microscopy, aberration-corrected scanning transmission electron microscopy, and ex situ battery cycling tests, the lithiation and sodiation behavior of ZnO nanowires is investigated. The findings show a direct correlation between the mechanical behavior of the lithiated/sodiated ZnO nanowires and their electrochemical cyclability. The mechanical brittleness of LiZn and the formation of nanocracks lead to the poor cyclability of Li-ion batteries with a ZnO anode. However, the sodiated ZnO nanowires show profuse dislocation plasticity. The observed high-density dislocations offer the sodiated ZnO anode more ductility and subsequently better cyclability than its Li-ion counterpart. The results reveal the importance of understanding the correlation between mechanical properties of battery electrodes and their cycling abilities.},
doi = {10.1002/smtd.201700202},
journal = {Small Methods},
issn = {2366-9608},
number = 9,
volume = 1,
place = {United States},
year = {2017},
month = {8}
}

Works referenced in this record:

“Electrochemical Shock” of Intercalation Electrodes: A Fracture Mechanics Analysis
journal, January 2010

  • Woodford, William H.; Chiang, Yet-Ming; Carter, W. Craig
  • Journal of The Electrochemical Society, Vol. 157, Issue 10
  • DOI: 10.1149/1.3464773

Two dimensional silicon nanowalls for lithium ion batteries
journal, January 2014

  • Wan, Jiayu; Kaplan, Alex F.; Zheng, Jia
  • J. Mater. Chem. A, Vol. 2, Issue 17
  • DOI: 10.1039/C3TA13546B

In situ atomic-scale imaging of electrochemical lithiation in silicon
journal, October 2012

  • Liu, Xiao Hua; Wang, Jiang Wei; Huang, Shan
  • Nature Nanotechnology, Vol. 7, Issue 11
  • DOI: 10.1038/nnano.2012.170

Large Plastic Deformation in High-Capacity Lithium-Ion Batteries Caused by Charge and Discharge: Large Plastic Deformation in Lithium-Ion Batteries
journal, March 2011


Na-ion batteries, recent advances and present challenges to become low cost energy storage systems
journal, January 2012

  • Palomares, Verónica; Serras, Paula; Villaluenga, Irune
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee02781j

In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode
journal, December 2010


Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries
journal, April 2009


Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Synthesis and stress relaxation of ZnO/Al-doped ZnO core–shell nanowires
journal, January 2013

  • Wang, Hong-Bo; Ma, Fei; Li, Qian-Qian
  • Nanoscale, Vol. 5, Issue 7
  • DOI: 10.1039/c3nr33584d

Charge carriers in rechargeable batteries: Na ions vs. Li ions
journal, January 2013

  • Hong, Sung You; Kim, Youngjin; Park, Yuwon
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40811f

Single-Layered Ultrasmall Nanoplates of MoS 2 Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage
journal, January 2014

  • Zhu, Changbao; Mu, Xiaoke; van Aken, Peter A.
  • Angewandte Chemie International Edition, Vol. 53, Issue 8
  • DOI: 10.1002/anie.201308354

In Situ Synthesis of C/Cu/ZnO Porous Hybrids as Anode Materials for Lithium Ion Batteries
journal, January 2014

  • Wang, Yuyan; Jiang, Xiaojian; Yang, Lishan
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 3
  • DOI: 10.1021/am404181q

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

Electrochemical reactivity of nanocomposite ZnO–Se for lithium-ion batteries
journal, January 2012


Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability
journal, March 2009

  • Liu, Jinping; Li, Yuanyuan; Ding, Ruimin
  • The Journal of Physical Chemistry C, Vol. 113, Issue 13
  • DOI: 10.1021/jp900427c

Probing the Failure Mechanism of SnO 2 Nanowires for Sodium-Ion Batteries
journal, October 2013

  • Gu, Meng; Kushima, Akihiro; Shao, Yuyan
  • Nano Letters, Vol. 13, Issue 11
  • DOI: 10.1021/nl402633n

Electrochemical Performances of Ni-Coated ZnO as an Anode Material for Lithium-Ion Batteries
journal, January 2007

  • Zhang, C. Q.; Tu, J. P.; Yuan, Y. F.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2400609

Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO 2 Materials
journal, June 2013

  • Nie, Anmin; Gan, Li-Yong; Cheng, Yingchun
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn402125e

Fe 2 O 3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries
journal, January 2014

  • Jian, Zelang; Zhao, Bin; Liu, Pan
  • Chem. Commun., Vol. 50, Issue 10
  • DOI: 10.1039/C3CC47977C

A chemo-mechanical model of lithiation in silicon
journal, October 2014


Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities
journal, August 2010

  • Wang, C. M.; Xu, W.; Liu, J.
  • Journal of Materials Research, Vol. 25, Issue 8
  • DOI: 10.1557/JMR.2010.0198

In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
journal, May 2012

  • Liu, Xiao Hua; Liu, Yang; Kushima, Akihiro
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201200024

Asynchronous Crystal Cell Expansion during Lithiation of K + -Stabilized α-MnO 2
journal, April 2015

  • Yuan, Yifei; Nie, Anmin; Odegard, Gregory M.
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl5048913

Ultrafast and Highly Reversible Sodium Storage in Zinc-Antimony Intermetallic Nanomaterials
journal, December 2015

  • Nie, Anmin; Gan, Li-yong; Cheng, Yingchun
  • Advanced Functional Materials, Vol. 26, Issue 4
  • DOI: 10.1002/adfm.201504461

Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO 2 Nanotubes
journal, February 2014

  • Gao, Qi; Gu, Meng; Nie, Anmin
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm403951b

Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation
journal, August 2015


Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations
journal, September 2014

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 26, Issue 18
  • DOI: 10.1021/cm501563f

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

The Electrochemical Reaction of Zinc Oxide Thin Films with Lithium
journal, January 2003

  • Fu, Zheng-Wen; Huang, Feng; Zhang, Ye
  • Journal of The Electrochemical Society, Vol. 150, Issue 6
  • DOI: 10.1149/1.1570410

Lithiation of ZnO nanowires studied by in-situ transmission electron microscopy and theoretical analysis
journal, December 2015


Averting cracks caused by insertion reaction in lithium–ion batteries
journal, June 2010

  • Hu, Yuhang; Zhao, Xuanhe; Suo, Zhigang
  • Journal of Materials Research, Vol. 25, Issue 6
  • DOI: 10.1557/JMR.2010.0142

Electrochemical investigation of sodium reactivity with nanostructured Co 3 O 4 for sodium-ion batteries
journal, January 2014

  • Rahman, Md Mokhlesur; Glushenkov, Alexey M.; Ramireddy, Thrinathreddy
  • Chem. Commun., Vol. 50, Issue 39
  • DOI: 10.1039/C4CC01033G

Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries
journal, January 2014

  • Pérez-Flores, J. C.; Baehtz, C.; Kuhn, A.
  • Journal of Materials Chemistry A, Vol. 2, Issue 6, p. 1825-1833
  • DOI: 10.1039/C3TA13394J

High damage tolerance of electrochemically lithiated silicon
journal, September 2015

  • Wang, Xueju; Fan, Feifei; Wang, Jiangwei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9417

Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures
journal, November 2012


Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation
journal, November 2011

  • Kushima, Akihiro; Liu, Xiao Hua; Zhu, Guang
  • Nano Letters, Vol. 11, Issue 11
  • DOI: 10.1021/nl201376j

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes
journal, February 2014


Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries
journal, May 2013

  • Sun, Yang; Zhao, Liang; Pan, Huilin
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2878

Flower-like ZnO–NiO–C films with high reversible capacity and rate capability for lithium-ion batteries
journal, August 2010


Dependence of Young's modulus on the sodium content within the structural tunnels of a one-dimensional Na-ion battery cathode
journal, January 2015

  • Maksud, M.; Palapati, N. K. R.; Byles, B. W.
  • Nanoscale, Vol. 7, Issue 42
  • DOI: 10.1039/C5NR06557G

Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries
journal, May 2011


Twin Boundary-Assisted Lithium Ion Transport
journal, December 2014

  • Nie, Anmin; Gan, Li-Yong; Cheng, Yingchun
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl504087z

Buckling of ZnO nanowires under uniaxial compression
journal, March 2008

  • Riaz, M.; Nur, O.; Willander, M.
  • Applied Physics Letters, Vol. 92, Issue 10
  • DOI: 10.1063/1.2894184

Lithiation-Induced Shuffling of Atomic Stacks
journal, August 2014

  • Nie, Anmin; Cheng, Yingchun; Zhu, Yihan
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl502347z

Selective Ionic Transport Pathways in Phosphorene
journal, March 2016