skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries

Abstract

This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe3O4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total mass, compared to current literature. This 3D nanostructured gelbased framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries.

Authors:
;
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1462424
Report Number(s):
BNL-207905-2018-JARP
Journal ID: ISSN 0935-9648
DOE Contract Number:  
SC0012704
Resource Type:
Journal Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 29; Journal Issue: 22; Journal ID: ISSN 0935-9648
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; nanoparticle; conductive gel framework; 3D; electrodes; next-generation high-energy batteries

Citation Formats

Shi, Ye, and Takeuchi, Esther S. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries. United States: N. p., 2017. Web. doi:10.1002/adma.201603922.
Shi, Ye, & Takeuchi, Esther S. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries. United States. doi:10.1002/adma.201603922.
Shi, Ye, and Takeuchi, Esther S. Tue . "A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries". United States. doi:10.1002/adma.201603922.
@article{osti_1462424,
title = {A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries},
author = {Shi, Ye and Takeuchi, Esther S.},
abstractNote = {This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe3O4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total mass, compared to current literature. This 3D nanostructured gelbased framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries.},
doi = {10.1002/adma.201603922},
journal = {Advanced Materials},
issn = {0935-9648},
number = 22,
volume = 29,
place = {United States},
year = {2017},
month = {6}
}

Works referenced in this record:

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Rational material design for ultrafast rechargeable lithium-ion batteries
journal, January 2015

  • Tang, Yuxin; Zhang, Yanyan; Li, Wenlong
  • Chemical Society Reviews, Vol. 44, Issue 17
  • DOI: 10.1039/C4CS00442F

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

In situ visualization of Li/Ag2VP2O8 batteries revealing rate-dependent discharge mechanism
journal, January 2015


Using all energy in a battery
journal, January 2015


Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design
journal, October 2014

  • Zhao, Hui; Wang, Zhihui; Lu, Peng
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503490h

Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes
journal, July 2013

  • Wu, Mingyan; Xiao, Xingcheng; Vukmirovic, Nenad
  • Journal of the American Chemical Society, Vol. 135, Issue 32
  • DOI: 10.1021/ja4054465

High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

Nanostructured conductive polymers for advanced energy storage
journal, January 2015

  • Shi, Ye; Peng, Lele; Ding, Yu
  • Chemical Society Reviews, Vol. 44, Issue 19
  • DOI: 10.1039/C5CS00362H

Energy gels: A bio-inspired material platform for advanced energy applications
journal, December 2016


Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles
journal, June 2013

  • Wu, Hui; Yu, Guihua; Pan, Lijia
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2941

Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes
journal, June 2013

  • Liu, Borui; Soares, Paulo; Checkles, Constantine
  • Nano Letters, Vol. 13, Issue 7
  • DOI: 10.1021/nl401880v

2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe 3 O 4
journal, June 2015

  • Bock, David C.; Kirshenbaum, Kevin C.; Wang, Jiajun
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 24
  • DOI: 10.1021/acsami.5b02478

Toward Uniformly Dispersed Battery Electrode Composite Materials: Characteristics and Performance
journal, January 2016

  • Kwon, Yo Han; Huie, Matthew M.; Choi, Dalsu
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b11938

Dispersion of Nanocrystalline Fe 3 O 4 within Composite Electrodes: Insights on Battery-Related Electrochemistry
journal, April 2016

  • Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 18
  • DOI: 10.1021/acsami.6b01134

Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments
journal, January 2015

  • Knehr, K. W.; Brady, Nicholas W.; Cama, Christina A.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0961514jes

Mesoscale Transport in Magnetite Electrodes for Lithium-Ion Batteries
journal, September 2015


Investigating the Complex Chemistry of Functional Energy Storage Systems: The Need for an Integrative, Multiscale (Molecular to Mesoscale) Perspective
journal, April 2016


A silicon nanoparticle/reduced graphene oxide composite anode with excellent nanoparticle dispersion to improve lithium ion battery performance
journal, April 2013

  • de Guzman, Rhet C.; Yang, Jinho; Cheng, Mark Ming-Cheng
  • Journal of Materials Science, Vol. 48, Issue 14
  • DOI: 10.1007/s10853-012-7094-7

Insights into Ionic Transport and Structural Changes in Magnetite during Multiple-Electron Transfer Reactions
journal, March 2016

  • Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502471

Carbon-Encapsulated Fe 3 O 4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material
journal, April 2013

  • He, Chunnian; Wu, Shan; Zhao, Naiqin
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn401059h

Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries
journal, January 2012

  • Chen, Yu; Xia, Hui; Lu, Li
  • Journal of Materials Chemistry, Vol. 22, Issue 11
  • DOI: 10.1039/c2jm15440d

A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery
journal, April 2016

  • Ma, Ting; Zhao, Qing; Wang, Jianbin
  • Angewandte Chemie International Edition, Vol. 55, Issue 22
  • DOI: 10.1002/anie.201601119

3D Porous γ-Fe 2 O 3 @C Nanocomposite as High-Performance Anode Material of Na-Ion Batteries
journal, November 2014

  • Zhang, Ning; Han, Xiaopeng; Liu, Yongchang
  • Advanced Energy Materials, Vol. 5, Issue 5
  • DOI: 10.1002/aenm.201401123

Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity
journal, May 2012

  • Pan, L.; Yu, G.; Zhai, D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 24
  • DOI: 10.1073/pnas.1202636109

Nanostructured conducting polymer hydrogels for energy storage applications
journal, January 2015


Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels
journal, October 2015


Carbon Coated Fe 3 O 4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries
journal, December 2008

  • Zhang, Wei-Ming; Wu, Xing-Long; Hu, Jin-Song
  • Advanced Functional Materials, Vol. 18, Issue 24
  • DOI: 10.1002/adfm.200801386

One-Pot Synthesis of Pomegranate-Structured Fe 3 O 4 /Carbon Nanospheres-Doped Graphene Aerogel for High-Rate Lithium Ion Batteries
journal, February 2016

  • He, Dafang; Li, Lixian; Bai, Fengjuan
  • Chemistry - A European Journal, Vol. 22, Issue 13
  • DOI: 10.1002/chem.201504429

Enhanced Cycling Stability of Lithium-Ion Batteries Using Graphene-Wrapped Fe 3 O 4 -Graphene Nanoribbons as Anode Materials
journal, May 2015

  • Li, Lei; Kovalchuk, Anton; Fei, Huilong
  • Advanced Energy Materials, Vol. 5, Issue 14
  • DOI: 10.1002/aenm.201500171

Uniform Hierarchical Fe 3 O 4 @Polypyrrole Nanocages for Superior Lithium Ion Battery Anodes
journal, April 2016


A high-performance anode for lithium ion batteries: Fe 3 O 4 microspheres encapsulated in hollow graphene shells
journal, January 2015

  • Jiang, Yu; Jiang, Zhong-Jie; Yang, Lufeng
  • Journal of Materials Chemistry A, Vol. 3, Issue 22
  • DOI: 10.1039/C5TA01848J

Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium-Ion Batteries
journal, April 2011

  • Kang, Eunae; Jung, Yoon Seok; Cavanagh, Andrew S.
  • Advanced Functional Materials, Vol. 21, Issue 13
  • DOI: 10.1002/adfm.201002576

On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential
journal, January 2002

  • Laruelle, S.; Grugeon, S.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 149, Issue 5, p. A627-A634
  • DOI: 10.1149/1.1467947

Self-Assembled Fe 3 O 4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement
journal, August 2013

  • Lee, Soo Hong; Yu, Seung-Ho; Lee, Ji Eun
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl401952h

Dye Degradation Mechanisms Using Nitrogen Doped and Copper(II) Phthalocyanine Tetracarboxylate Sensitized Titanate and TiO 2 Nanotubes
journal, May 2016

  • Souza, Juliana S.; Pinheiro, Mauricio V. B.; Krambrock, Klaus
  • The Journal of Physical Chemistry C, Vol. 120, Issue 21
  • DOI: 10.1021/acs.jpcc.6b02919

Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3478667

    Works referencing / citing this record:

    Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies
    journal, January 2019

    • Ma, Zhong; Shi, Wen; Yan, Ke
    • Chemical Science, Vol. 10, Issue 25
    • DOI: 10.1039/c9sc02033k