skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide

Abstract

Vanadium dioxide (VO 2), an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally driven physics. Using ultrafast temperature- and fluence-dependent optical spectroscopy and x-ray scattering, we show that multiple interrelated electronic and structural processes in the nonequilibrium dynamics in VO 2 can be disentangled in the time domain. Specifically, following intense subpicosecond terahertz (THz) electric-field excitation, a partial collapse of the insulating gap occurs within the first picosecond. At temperatures sufficiently close to the transition temperature and for THz peak fields above a threshold of approximately 1 MV/cm, this electronic reconfiguration initiates a change in lattice symmetry taking place on a slower timescale. We identify the kinetic energy increase of electrons tunneling in the strong electric field as the driving force, illustrating a promising method to control electronic and structural interactions in correlated materials on an ultrafast timescale.

Authors:
 [1];  [2];  [3];  [3];  [2];  [4];  [4];  [5];  [6];  [7];  [7];  [8];  [9];  [8];  [10];  [11];  [9];  [9];  [7];  [12] more »;  [12];  [13];  [13];  [13];  [2];  [2];  [2];  [2];  [7];  [5];  [13];  [5];  [3];  [14];  [6];  [4];  [3];  [15] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Temple Univ., Philadelphia, PA (United States). Dept. of Physics
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)
  3. IBM Almaden Research Center, San Jose, CA (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Chemistry
  5. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  6. Boston Univ., MA (United States). Dept. of Physics; Univ. of California, San Diego, CA (United States). Dept. of Physics
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Applied Physics
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Univ. of Amsterdam (Netherlands). Van der Waals-Zeeman Inst.
  11. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Physics
  12. Boston Univ., MA (United States). Dept. of Physics; Federal Inst. of Technology, Zurich (Switzerland). Inst. for Quantum Electronics
  13. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Synchrotron Radiation Lightsource (SSRL)
  14. Martin Luther Univ. Halle-Wittenberg (MLU), Halle (Germany)
  15. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Uppsala Univ. (Sweden). Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; US Department of the Navy, Office of Naval Research (ONR); National Science Foundation (NSF); Foundation for Science and Technology (FCT) (Portugal); German Research Foundation (DFG); Knut and Alice Wallenberg Foundation
OSTI Identifier:
1461889
Alternate Identifier(s):
OSTI ID: 1458589
Grant/Contract Number:  
AC02-06CH11357; FG02-09ER46643; SFB762; CHE-1111557; AC02-76SF00515; N00014-13-1-0509; SFRH/ BD/ 47847/ 2008; 2015-SLAC-100238-Funding
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 98; Journal Issue: 4; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; metal-insulator transition; strongly correlated systems; ultrafast pump-probe spectroscopy; x-ray scattering

Citation Formats

Gray, A. X., Hoffmann, M. C., Jeong, J., Aetukuri, N. P., Zhu, D., Hwang, H. Y., Brandt, N. C., Wen, H., Sternbach, A. J., Bonetti, S., Reid, A. H., Kukreja, R., Graves, C., Wang, T., Granitzka, P., Chen, Z., Higley, D. J., Chase, T., Jal, E., Abreu, E., Liu, M. K., Weng, T. -C., Sokaras, D., Nordlund, D., Chollet, M., Alonso-Mori, R., Lemke, H., Glownia, J. M., Trigo, M., Zhu, Y., Ohldag, H., Freeland, J. W., Samant, M. G., Berakdar, J., Averitt, R. D., Nelson, K. A., Parkin, S. S. P., and Durr, H. A.. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.98.045104.
Gray, A. X., Hoffmann, M. C., Jeong, J., Aetukuri, N. P., Zhu, D., Hwang, H. Y., Brandt, N. C., Wen, H., Sternbach, A. J., Bonetti, S., Reid, A. H., Kukreja, R., Graves, C., Wang, T., Granitzka, P., Chen, Z., Higley, D. J., Chase, T., Jal, E., Abreu, E., Liu, M. K., Weng, T. -C., Sokaras, D., Nordlund, D., Chollet, M., Alonso-Mori, R., Lemke, H., Glownia, J. M., Trigo, M., Zhu, Y., Ohldag, H., Freeland, J. W., Samant, M. G., Berakdar, J., Averitt, R. D., Nelson, K. A., Parkin, S. S. P., & Durr, H. A.. Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide. United States. doi:10.1103/PhysRevB.98.045104.
Gray, A. X., Hoffmann, M. C., Jeong, J., Aetukuri, N. P., Zhu, D., Hwang, H. Y., Brandt, N. C., Wen, H., Sternbach, A. J., Bonetti, S., Reid, A. H., Kukreja, R., Graves, C., Wang, T., Granitzka, P., Chen, Z., Higley, D. J., Chase, T., Jal, E., Abreu, E., Liu, M. K., Weng, T. -C., Sokaras, D., Nordlund, D., Chollet, M., Alonso-Mori, R., Lemke, H., Glownia, J. M., Trigo, M., Zhu, Y., Ohldag, H., Freeland, J. W., Samant, M. G., Berakdar, J., Averitt, R. D., Nelson, K. A., Parkin, S. S. P., and Durr, H. A.. Mon . "Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide". United States. doi:10.1103/PhysRevB.98.045104.
@article{osti_1461889,
title = {Ultrafast terahertz field control of electronic and structural interactions in vanadium dioxide},
author = {Gray, A. X. and Hoffmann, M. C. and Jeong, J. and Aetukuri, N. P. and Zhu, D. and Hwang, H. Y. and Brandt, N. C. and Wen, H. and Sternbach, A. J. and Bonetti, S. and Reid, A. H. and Kukreja, R. and Graves, C. and Wang, T. and Granitzka, P. and Chen, Z. and Higley, D. J. and Chase, T. and Jal, E. and Abreu, E. and Liu, M. K. and Weng, T. -C. and Sokaras, D. and Nordlund, D. and Chollet, M. and Alonso-Mori, R. and Lemke, H. and Glownia, J. M. and Trigo, M. and Zhu, Y. and Ohldag, H. and Freeland, J. W. and Samant, M. G. and Berakdar, J. and Averitt, R. D. and Nelson, K. A. and Parkin, S. S. P. and Durr, H. A.},
abstractNote = {Vanadium dioxide (VO2), an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally driven physics. Using ultrafast temperature- and fluence-dependent optical spectroscopy and x-ray scattering, we show that multiple interrelated electronic and structural processes in the nonequilibrium dynamics in VO2 can be disentangled in the time domain. Specifically, following intense subpicosecond terahertz (THz) electric-field excitation, a partial collapse of the insulating gap occurs within the first picosecond. At temperatures sufficiently close to the transition temperature and for THz peak fields above a threshold of approximately 1 MV/cm, this electronic reconfiguration initiates a change in lattice symmetry taking place on a slower timescale. We identify the kinetic energy increase of electrons tunneling in the strong electric field as the driving force, illustrating a promising method to control electronic and structural interactions in correlated materials on an ultrafast timescale.},
doi = {10.1103/PhysRevB.98.045104},
journal = {Physical Review B},
number = 4,
volume = 98,
place = {United States},
year = {Mon Jul 02 00:00:00 EDT 2018},
month = {Mon Jul 02 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 2, 2019
Publisher's Version of Record

Save / Share: