Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power

Journal Article · · Nature Energy

Using negative emissions technologies for the net removal of greenhouse gases from the atmosphere could provide a pathway to limit global temperature rises. Direct air capture of carbon dioxide offers the prospect of permanently lowering the atmospheric CO2 concentration, providing that economical and energy-efficient technologies can be developed and deployed on a large scale. Here in this paper, we report an approach to direct air capture, at the laboratory scale, using mostly off-the-shelf materials and equipment. First, CO2 absorption is achieved with readily available and environmentally friendly aqueous amino acid solutions (glycine and sarcosine) using a household humidifier. The CO2-loaded solutions are then reacted with a simple guanidine compound, which crystallizes as a very insoluble carbonate salt and regenerates the amino acid sorbent. Finally, effective CO2 release and near-quantitative regeneration of the guanidine compound are achieved by relatively mild heating of the carbonate crystals using concentrated solar power.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Grant/Contract Number:
AC05-00OR22725
OSTI ID:
1460227
Journal Information:
Nature Energy, Journal Name: Nature Energy Journal Issue: 7 Vol. 3; ISSN 2058-7546
Publisher:
Nature Publishing GroupCopyright Statement
Country of Publication:
United States
Language:
English