skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M 2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)

Abstract

Analysis of the CO 2 adsorption properties of a well-known series of metal–organic frameworks M 2(dobdc) (dobdc 4– = 2,5-dioxido-1,4-benzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Cu, and Zn) is carried out in tandem with in situ structural studies to identify the host–guest interactions that lead to significant differences in isosteric heats of CO 2 adsorption. Neutron and X-ray powder diffraction and single crystal X-ray diffraction experiments are used to unveil the site-specific binding properties of CO 2 within many of these materials while systematically varying both the amount of CO 2 and the temperature. Unlike previous studies, we show that CO 2 adsorbed at the metal cations exhibits intramolecular angles with minimal deviations from 180°, a finding that indicates a strongly electrostatic and physisorptive interaction with the framework surface and sheds more light on the ongoing discussion regarding whether CO 2 adsorbs in a linear or nonlinear geometry. This has important implications for proposals that have been made to utilize these materials for the activation and chemical conversion of CO 2. For the weaker CO 2 adsorbents, significant elongation of the metal–O(CO 2) distances are observed and diffraction experiments additionally reveal that secondary CO 2 adsorption sites, whilemore » likely stabilized by the population of the primary adsorption sites, significantly contribute to adsorption behavior at ambient temperature. In conclusion, density functional theory calculations including van der Waals dispersion quantitatively corroborate and rationalize observations regarding intramolecular CO 2 angles and trends in relative geometric properties and heats of adsorption in the M 2(dobdc)–CO 2 adducts.« less

Authors:
 [1];  [2];  [3];  [3];  [3];  [4];  [3];  [4];  [4];  [5];  [6];  [5];  [1];  [7];  [4];  [8];  [9]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  5. Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia)
  6. Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia); Australian Synchrotron, Clayton (Australia)
  7. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)
  8. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  9. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Univ. of Delaware, Newark, DE (United States)
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1459348
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Chemical Science
Additional Journal Information:
Journal Volume: 5; Journal Issue: 12; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Queen, Wendy L., Hudson, Matthew R., Bloch, Eric D., Mason, Jarad A., Gonzalez, Miguel I., Lee, Jason S., Gygi, David, Howe, Joshua D., Lee, Kyuho, Darwish, Tamim A., James, Michael, Peterson, Vanessa K., Teat, Simon J., Smit, Berend, Neaton, Jeffrey B., Long, Jeffrey R., and Brown, Craig M.. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). United States: N. p., 2014. Web. doi:10.1039/C4SC02064B.
Queen, Wendy L., Hudson, Matthew R., Bloch, Eric D., Mason, Jarad A., Gonzalez, Miguel I., Lee, Jason S., Gygi, David, Howe, Joshua D., Lee, Kyuho, Darwish, Tamim A., James, Michael, Peterson, Vanessa K., Teat, Simon J., Smit, Berend, Neaton, Jeffrey B., Long, Jeffrey R., & Brown, Craig M.. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). United States. doi:10.1039/C4SC02064B.
Queen, Wendy L., Hudson, Matthew R., Bloch, Eric D., Mason, Jarad A., Gonzalez, Miguel I., Lee, Jason S., Gygi, David, Howe, Joshua D., Lee, Kyuho, Darwish, Tamim A., James, Michael, Peterson, Vanessa K., Teat, Simon J., Smit, Berend, Neaton, Jeffrey B., Long, Jeffrey R., and Brown, Craig M.. Thu . "Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)". United States. doi:10.1039/C4SC02064B. https://www.osti.gov/servlets/purl/1459348.
@article{osti_1459348,
title = {Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn)},
author = {Queen, Wendy L. and Hudson, Matthew R. and Bloch, Eric D. and Mason, Jarad A. and Gonzalez, Miguel I. and Lee, Jason S. and Gygi, David and Howe, Joshua D. and Lee, Kyuho and Darwish, Tamim A. and James, Michael and Peterson, Vanessa K. and Teat, Simon J. and Smit, Berend and Neaton, Jeffrey B. and Long, Jeffrey R. and Brown, Craig M.},
abstractNote = {Analysis of the CO2 adsorption properties of a well-known series of metal–organic frameworks M2(dobdc) (dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate; M = Mg, Mn, Fe, Co, Ni, Cu, and Zn) is carried out in tandem with in situ structural studies to identify the host–guest interactions that lead to significant differences in isosteric heats of CO2 adsorption. Neutron and X-ray powder diffraction and single crystal X-ray diffraction experiments are used to unveil the site-specific binding properties of CO2 within many of these materials while systematically varying both the amount of CO2 and the temperature. Unlike previous studies, we show that CO2 adsorbed at the metal cations exhibits intramolecular angles with minimal deviations from 180°, a finding that indicates a strongly electrostatic and physisorptive interaction with the framework surface and sheds more light on the ongoing discussion regarding whether CO2 adsorbs in a linear or nonlinear geometry. This has important implications for proposals that have been made to utilize these materials for the activation and chemical conversion of CO2. For the weaker CO2 adsorbents, significant elongation of the metal–O(CO2) distances are observed and diffraction experiments additionally reveal that secondary CO2 adsorption sites, while likely stabilized by the population of the primary adsorption sites, significantly contribute to adsorption behavior at ambient temperature. In conclusion, density functional theory calculations including van der Waals dispersion quantitatively corroborate and rationalize observations regarding intramolecular CO2 angles and trends in relative geometric properties and heats of adsorption in the M2(dobdc)–CO2 adducts.},
doi = {10.1039/C4SC02064B},
journal = {Chemical Science},
number = 12,
volume = 5,
place = {United States},
year = {Thu Aug 28 00:00:00 EDT 2014},
month = {Thu Aug 28 00:00:00 EDT 2014}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 96 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n
journal, February 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites
journal, March 2012


Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal-Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal-Oxygen Chains
journal, October 2005

  • Dietzel, Pascal D. C.; Morita, Yusuke; Blom, Richard
  • Angewandte Chemie International Edition, Vol. 44, Issue 39, p. 6354-6358
  • DOI: 10.1002/anie.200501508

Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites
journal, November 2009

  • Britt, D.; Furukawa, H.; Wang, B.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 49, p. 20637-20640
  • DOI: 10.1073/pnas.0909718106

Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network
journal, December 2011

  • Queen, Wendy L.; Brown, Craig M.; Britt, David K.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 50, p. 24915-24919
  • DOI: 10.1021/jp208529p

Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores
journal, August 2008

  • Caskey, Stephen R.; Wong-Foy, Antek G.; Matzger, Adam J.
  • Journal of the American Chemical Society, Vol. 130, Issue 33, p. 10870-10871
  • DOI: 10.1021/ja8036096

A short history of SHELX
journal, December 2007

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 64, Issue 1, p. 112-122
  • DOI: 10.1107/S0108767307043930

Highly-Selective and Reversible O2 Binding in Cr3(1,3,5-benzenetricarboxylate)2
journal, June 2010

  • Murray, Leslie J.; Dinca, Mircea; Yano, Junko
  • Journal of the American Chemical Society, Vol. 132, Issue 23, p. 7856-7857
  • DOI: 10.1021/ja1027925

Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units
journal, February 2005

  • Rosi, Nathaniel L.; Kim, Jaheon; Eddaoudi, Mohamed
  • Journal of the American Chemical Society, Vol. 127, Issue 5, p. 1504-1518
  • DOI: 10.1021/ja045123o

Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods
journal, January 2010

  • Sumida, Kenji; Horike, Satoshi; Kaye, Steven S.
  • Chemical Science, Vol. 1, Issue 2, p. 184-191
  • DOI: 10.1039/c0sc00179a

Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption
journal, January 2011

  • Mason, Jarad A.; Sumida, Kenji; Herm, Zoey R.
  • Energy & Environmental Science, Vol. 4, Issue 8, p. 3030-3040
  • DOI: 10.1039/c1ee01720a

High Propene/Propane Selectivity in Isostructural Metal-Organic Frameworks with High Densities of Open Metal Sites
journal, January 2012

  • Bae, Youn-Sang; Lee, Chang Yeon; Kim, Ki Chul
  • Angewandte Chemie International Edition, Vol. 51, Issue 8, p. 1857-1860
  • DOI: 10.1002/anie.201107534