skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort

Abstract

The purpose of this paper is to present an overview of ongoing work on the Million Worker Study (MWS), highlighting some of the key methods and progress so far as exemplified by the study of workers at the Mallinckrodt Chemical Works (MCW). The MWS began nearly 25 y ago and continues in a stepwise fashion, evaluating one study cohort at a time. It includes workers from U.S. Department of Energy (DOE) Manhattan Project facilities, U.S. Nuclear Regulatory Commission (NRC) regulated nuclear power plants, industrial radiographers, U.S. Department of Defense (DoD) nuclear weapons test participants, and physicians and technologists working with medical radiation. The purpose is to fill the major gap in radiation protection and science: What is the risk when exposure is received gradually over time rather than briefly as for the atomic bomb survivors? Studies published or planned in 2018 include leukemia (and dosimetry) among atomic veterans, leukemia among nuclear power plant workers, mortality among workers at the MCW, and a comprehensive National Council on Radiation Protection and Measurements (NCRP) Report on dosimetry for the MWS. MCW has a singular place in history: the 40 tons (T) of uranium oxide produced at MCW were used by Enrico Fermi onmore » 2 December 1942 to produce the first manmade sustained and controlled nuclear reaction, and the atomic age was born. Seventy-six years later, the authors followed the over 2,500 MCW workers for mortality and reconstructed dose from six sources of exposure: external gamma rays from the radioactive elements in pitchblende; medical x rays from occupationally required chest examinations; intakes of pitchblende (uranium, radium, and silica) measured by urine samples; radon breath analyses and dust surveys overseen by Robley Evans and Merril Eisenbud; occupational exposures received before and after employment at MCW; and cumulative radon concentrations and lung dose from the decay of radium in the work environment. The unique exposure reconstructions allow for multiple evaluations, including estimates of silica dust. The study results are relevant today. For example, NASA is interested that radium, deposited in the brain, releases high-LET alpha particles - the only human analogue, though limited, for high energy, high-Z particles (galactic cosmic rays) traveling through space that might affect astronauts on Mars missions. In conclusion, don’t discount the past; it’s the prologue to the future!« less

Authors:
 [1];  [2];  [2];  [2];  [3];  [4];  [5];  [6];  [7]
  1. National Council on Radiation Protection and Measurement, Bethesda, MD (United States); Vanderbilt Univ., Nashville, TN (United States). Medical School and Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center
  2. Oak Ridge Associated Univ., Oak Ridge, TN (United States)
  3. EpidStat Inst., Ann Arbor, MI (United States)
  4. Vanderbilt Univ., Nashville, TN (United States). Medical School and Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center
  5. International Epidemiology Inst., Rockville, MD (United States)
  6. National Council on Radiation Protection and Measurement, Bethesda, MD (United States)
  7. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1459273
Alternate Identifier(s):
OSTI ID: 1474693
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Health Physics
Additional Journal Information:
Journal Volume: 114; Journal Issue: 4; Journal ID: ISSN 0017-9078
Publisher:
Health Physics Society
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; 60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY

Citation Formats

Boice, John D., Ellis, Elizabeth D., Golden, Ashley P., Girardi, David J., Cohen, Sarah S., Chen, Heidi, Mumma, Michael T., Shore, Roy E., and Leggett, Richard W. The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort. United States: N. p., 2018. Web. doi:10.1097/HP.0000000000000825.
Boice, John D., Ellis, Elizabeth D., Golden, Ashley P., Girardi, David J., Cohen, Sarah S., Chen, Heidi, Mumma, Michael T., Shore, Roy E., & Leggett, Richard W. The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort. United States. doi:10.1097/HP.0000000000000825.
Boice, John D., Ellis, Elizabeth D., Golden, Ashley P., Girardi, David J., Cohen, Sarah S., Chen, Heidi, Mumma, Michael T., Shore, Roy E., and Leggett, Richard W. Sun . "The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort". United States. doi:10.1097/HP.0000000000000825.
@article{osti_1459273,
title = {The Past Informs the Future: An Overview of the Million Worker Study and the Mallinckrodt Chemical Works Cohort},
author = {Boice, John D. and Ellis, Elizabeth D. and Golden, Ashley P. and Girardi, David J. and Cohen, Sarah S. and Chen, Heidi and Mumma, Michael T. and Shore, Roy E. and Leggett, Richard W.},
abstractNote = {The purpose of this paper is to present an overview of ongoing work on the Million Worker Study (MWS), highlighting some of the key methods and progress so far as exemplified by the study of workers at the Mallinckrodt Chemical Works (MCW). The MWS began nearly 25 y ago and continues in a stepwise fashion, evaluating one study cohort at a time. It includes workers from U.S. Department of Energy (DOE) Manhattan Project facilities, U.S. Nuclear Regulatory Commission (NRC) regulated nuclear power plants, industrial radiographers, U.S. Department of Defense (DoD) nuclear weapons test participants, and physicians and technologists working with medical radiation. The purpose is to fill the major gap in radiation protection and science: What is the risk when exposure is received gradually over time rather than briefly as for the atomic bomb survivors? Studies published or planned in 2018 include leukemia (and dosimetry) among atomic veterans, leukemia among nuclear power plant workers, mortality among workers at the MCW, and a comprehensive National Council on Radiation Protection and Measurements (NCRP) Report on dosimetry for the MWS. MCW has a singular place in history: the 40 tons (T) of uranium oxide produced at MCW were used by Enrico Fermi on 2 December 1942 to produce the first manmade sustained and controlled nuclear reaction, and the atomic age was born. Seventy-six years later, the authors followed the over 2,500 MCW workers for mortality and reconstructed dose from six sources of exposure: external gamma rays from the radioactive elements in pitchblende; medical x rays from occupationally required chest examinations; intakes of pitchblende (uranium, radium, and silica) measured by urine samples; radon breath analyses and dust surveys overseen by Robley Evans and Merril Eisenbud; occupational exposures received before and after employment at MCW; and cumulative radon concentrations and lung dose from the decay of radium in the work environment. The unique exposure reconstructions allow for multiple evaluations, including estimates of silica dust. The study results are relevant today. For example, NASA is interested that radium, deposited in the brain, releases high-LET alpha particles - the only human analogue, though limited, for high energy, high-Z particles (galactic cosmic rays) traveling through space that might affect astronauts on Mars missions. In conclusion, don’t discount the past; it’s the prologue to the future!},
doi = {10.1097/HP.0000000000000825},
journal = {Health Physics},
number = 4,
volume = 114,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2018},
month = {Sun Apr 01 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 1, 2019
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share: