skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Diffusion-dominated mixing in moderate convergence implosions

Abstract

High-$Z$ material mixed into the fuel degrades inertial fusion implosions and can prevent ignition. Mix is often assumed to be dominated by hydrodynamic instabilities, but in this paper we report Omega data, using shells with $${\sim}150\mathrm{nm}$$ deuterated layers to gain unprecedented resolution, which give strong evidence that the dominant mix mechanism is diffusion for these moderate temperature ($${\lesssim}6$$ keV) and convergence ($${\sim}12$$) implosions. Finally, small-scale instability-driven or turbulent mix is negligible.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2];  [2];  [3];  [3];  [4];  [4];  [4]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. AWE plc, Reading (United Kingdom). Plasma Physics Dept.
  3. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  4. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10); LANL Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1458956
Alternate Identifier(s):
OSTI ID: 1454311
Report Number(s):
LA-UR-17-27467
Journal ID: ISSN 2470-0045; TRN: US1901536
Grant/Contract Number:  
AC52-06NA25396; NA0001808; AC52-06NA52396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 97; Journal Issue: 6; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; diffusion; hydrodynamic instabilities; inertial confinement fusion

Citation Formats

Zylstra, A. B., Hoffman, N. M., Herrmann, H. W., Schmitt, M. J., Kim, Y. H., Meaney, K., Leatherland, A., Gales, S., Forrest, C., Glebov, V. Yu., Schoff, M., Hoppe, M., and Ravelo, N. Diffusion-dominated mixing in moderate convergence implosions. United States: N. p., 2018. Web. doi:10.1103/PhysRevE.97.061201.
Zylstra, A. B., Hoffman, N. M., Herrmann, H. W., Schmitt, M. J., Kim, Y. H., Meaney, K., Leatherland, A., Gales, S., Forrest, C., Glebov, V. Yu., Schoff, M., Hoppe, M., & Ravelo, N. Diffusion-dominated mixing in moderate convergence implosions. United States. doi:10.1103/PhysRevE.97.061201.
Zylstra, A. B., Hoffman, N. M., Herrmann, H. W., Schmitt, M. J., Kim, Y. H., Meaney, K., Leatherland, A., Gales, S., Forrest, C., Glebov, V. Yu., Schoff, M., Hoppe, M., and Ravelo, N. Thu . "Diffusion-dominated mixing in moderate convergence implosions". United States. doi:10.1103/PhysRevE.97.061201. https://www.osti.gov/servlets/purl/1458956.
@article{osti_1458956,
title = {Diffusion-dominated mixing in moderate convergence implosions},
author = {Zylstra, A. B. and Hoffman, N. M. and Herrmann, H. W. and Schmitt, M. J. and Kim, Y. H. and Meaney, K. and Leatherland, A. and Gales, S. and Forrest, C. and Glebov, V. Yu. and Schoff, M. and Hoppe, M. and Ravelo, N.},
abstractNote = {High-$Z$ material mixed into the fuel degrades inertial fusion implosions and can prevent ignition. Mix is often assumed to be dominated by hydrodynamic instabilities, but in this paper we report Omega data, using shells with ${\sim}150\mathrm{nm}$ deuterated layers to gain unprecedented resolution, which give strong evidence that the dominant mix mechanism is diffusion for these moderate temperature (${\lesssim}6$ keV) and convergence (${\sim}12$) implosions. Finally, small-scale instability-driven or turbulent mix is negligible.},
doi = {10.1103/PhysRevE.97.061201},
journal = {Physical Review E},
issn = {2470-0045},
number = 6,
volume = 97,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermo-diffusion in inertially confined plasmas
journal, April 2014


Progress towards ignition on the National Ignition Facility
journal, July 2013

  • Edwards, M. J.; Patel, P. K.; Lindl, J. D.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816115

High‐speed gated x‐ray imaging for ICF target experiments (invited)
journal, October 1992

  • Bradley, D. K.; Bell, P. M.; Kilkenny, J. D.
  • Review of Scientific Instruments, Vol. 63, Issue 10
  • DOI: 10.1063/1.1143571

Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
journal, May 2014


First beryllium capsule implosions on the National Ignition Facility
journal, May 2016

  • Kline, J. L.; Yi, S. A.; Simakov, A. N.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948277

Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


Transport Processes in Multicomponent Plasma
journal, September 2002


Direct-drive DT implosions with Knudsen number variations
journal, May 2016


First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique
journal, July 2016


Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, August 2016


Atomic mix in directly driven inertial confinement implosions
journal, November 2011

  • Wilson, D. C.; Ebey, P. S.; Sangster, T. C.
  • Physics of Plasmas, Vol. 18, Issue 11
  • DOI: 10.1063/1.3656962

Ion-kinetic simulations of D- 3 He gas-filled inertial confinement fusion target implosions with moderate to large Knudsen number
journal, January 2016

  • Larroche, O.; Rinderknecht, H. G.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4939025

Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

Effects of viscosity and mass diffusion in hydrodynamically unstable plasma flows
journal, August 2004


Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
journal, August 2013


Effects of Fuel-Shell Mix upon Direct-Drive, Spherical Implosions on OMEGA
journal, September 2002


Initial performance results of the OMEGA laser system
journal, January 1997


Time-Dependent Nuclear Measurements of Mix in Inertial Confinement Fusion
journal, May 2007


Measurement of the T + T Neutron Spectrum Using the National Ignition Facility
journal, August 2013


The National Ignition Facility: enabling fusion ignition for the 21st century
journal, November 2004


Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light
journal, October 1989

  • Skupsky, S.; Short, R. W.; Kessler, T.
  • Journal of Applied Physics, Vol. 66, Issue 8
  • DOI: 10.1063/1.344101

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Effect of the mounting membrane on shape in inertial confinement fusion implosions
journal, February 2015

  • Nagel, S. R.; Haan, S. W.; Rygg, J. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907179

Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance
journal, January 1996

  • Lin, Y.; Lawrence, G. N.; Kessler, T. J.
  • Optics Letters, Vol. 21, Issue 20
  • DOI: 10.1364/OL.21.001703

Mitigating hydrodynamic mix at the gas-ice interface with a combination of magnetic, ablative, and viscous stabilization
journal, September 2014


Erratum: “Review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)]
journal, December 2014

  • Lindl, J. D.; Landen, O. L.; Edwards, J.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903459

Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility
journal, September 2014

  • Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4894215

Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation
journal, June 2000


Knudsen Layer Reduction of Fusion Reactivity
journal, August 2012


Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments
journal, July 2016

  • Haines, Brian M.; Grim, Gary P.; Fincke, James R.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4959117

Fusion neutrons from the gas–pusher interface in deuterated-shell inertial confinement fusion implosions
journal, March 1998

  • Chrien, R. E.; Hoffman, N. M.; Colvin, J. D.
  • Physics of Plasmas, Vol. 5, Issue 3
  • DOI: 10.1063/1.872761

Diffusion coefficients for stellar plasmas
journal, May 1986

  • Paquette, C.; Pelletier, C.; Fontaine, G.
  • The Astrophysical Journal Supplement Series, Vol. 61
  • DOI: 10.1086/191111

Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures
journal, September 2010


Core performance and mix in direct-drive spherical implosions with high uniformity
journal, May 2001

  • Meyerhofer, D. D.; Delettrez, J. A.; Epstein, R.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1350964

Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility
journal, January 2014


Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions
journal, May 2015

  • Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921130

Some Criteria for a Power Producing Thermonuclear Reactor
journal, January 1957


High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)
journal, October 2012

  • Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4742926

The role of hot spot mix in the low-foot and high-foot implosions on the NIF
journal, May 2017

  • Ma, T.; Patel, P. K.; Izumi, N.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983625

X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017