skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils

Authors:
ORCiD logo [1];  [1];  [2];  [1]; ORCiD logo [1];  [3];  [4];  [4];  [4];  [5];  [5];  [5];  [6]; ORCiD logo [1]
  1. Univ. of California, Davis, CA (United States)
  2. Iowa State Univ., Ames, IA (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Livermore, CA (United States)
  6. Univ. of Alabama, Birmingham, AL (United States)
Publication Date:
Research Org.:
Univ. of California, Davis, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1755366
Alternate Identifier(s):
OSTI ID: 1410575; OSTI ID: 1417179; OSTI ID: 1458688
Award DOI(s):
https://doi.org/10.1063/1.5004153
Awarding Organization: DOE

Report Number(s):
LA-UR-18-20061; LLNL-JRNL-738424
Journal ID: ISSN 0003-6951; TRN: US2205539
Grant/Contract Number:  
AC52-06NA25396; AC02-05CH11231; AC52-07NA27344; NA0002908; NA0002928
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 111; Journal Issue: 22; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Material Science; Antennas; Mechanical instruments; Optically detected magnetic resonance; Crystallographic defects; Microwave radiation; Microchannel; Chemical elements; Diamond anvil cells; Zero field splitting; Transition metals

Citation Formats

Steele, L. G., Lawson, M., Onyszczak, M., Bush, B. T., Mei, Z., Dioguardi, A. P., King, J., Parker, A., Pines, A., Weir, S. T., Evans, W., Visbeck, K., Vohra, Y. K., and Curro, N. J. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. United States: N. p., 2017. Web. doi:10.1063/1.5004153.
Steele, L. G., Lawson, M., Onyszczak, M., Bush, B. T., Mei, Z., Dioguardi, A. P., King, J., Parker, A., Pines, A., Weir, S. T., Evans, W., Visbeck, K., Vohra, Y. K., & Curro, N. J. Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils. United States. https://doi.org/10.1063/1.5004153
Steele, L. G., Lawson, M., Onyszczak, M., Bush, B. T., Mei, Z., Dioguardi, A. P., King, J., Parker, A., Pines, A., Weir, S. T., Evans, W., Visbeck, K., Vohra, Y. K., and Curro, N. J. 2017. "Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils". United States. https://doi.org/10.1063/1.5004153. https://www.osti.gov/servlets/purl/1755366.
@article{osti_1755366,
title = {Optically detected magnetic resonance of nitrogen vacancies in a diamond anvil cell using designer diamond anvils},
author = {Steele, L. G. and Lawson, M. and Onyszczak, M. and Bush, B. T. and Mei, Z. and Dioguardi, A. P. and King, J. and Parker, A. and Pines, A. and Weir, S. T. and Evans, W. and Visbeck, K. and Vohra, Y. K. and Curro, N. J.},
abstractNote = {},
doi = {10.1063/1.5004153},
url = {https://www.osti.gov/biblio/1755366}, journal = {Applied Physics Letters},
issn = {0003-6951},
number = 22,
volume = 111,
place = {United States},
year = {Mon Nov 27 00:00:00 EST 2017},
month = {Mon Nov 27 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Understanding the Magnetic Resonance Spectrum of Nitrogen Vacancy Centers in an Ensemble of Randomly Oriented Nanodiamonds
journal, September 2017


Electronic Properties and Metrology Applications of the Diamond NV Center under Pressure
journal, January 2014


Nuclear magnetic resonance in a diamond anvil cell at very high pressures
journal, February 1998


Ultralong spin coherence time in isotopically engineered diamond
journal, April 2009


Spontaneous Formation of a Superconducting and Antiferromagnetic Hybrid State in SrFe 2 As 2 under High Pressure
journal, December 2009


Pressure-Induced Superconductivity in Quasi-2D CeRhIn 5
journal, May 2000


Superconductivity up to 29 K in SrFe 2 As 2 and BaFe 2 As 2 at high pressures
journal, December 2008


10 GPa-Class High-Pressure NMR Technique Realized by the New Cell with Improved Space Efficiency [容積効率にこだわった高圧セルによる10 GPa級NMR測定]
journal, January 2012


Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond
journal, January 2015


NMR in a diamond anvil cell
journal, March 1987


Solidification of High-Pressure Medium Daphne 7373
journal, June 2007


High sensitivity magnetic imaging using an array of spins in diamond
text, January 2010


High sensitivity magnetic imaging using an array of spins in diamond
journal, April 2010


Solid-state electronic spin coherence time approaching one second
text, January 2012


Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
journal, August 2015


Observation of the Wigner-Huntington transition to metallic hydrogen
journal, January 2017


Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit
journal, December 2012


Magnetic susceptibility measurements at high pressure using designer diamond anvils
journal, April 2003


Properties of nitrogen-vacancy centers in diamond: the group theoretic approach
journal, February 2011


Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor
journal, January 2013


Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer) 3 Sample Volume
journal, January 2013


Molecular motion in solid H 2 at high pressures
journal, December 1989


An electrical microheater technique for high-pressure and high-temperature diamond anvil cell experiments
journal, January 2009


Solid-state electronic spin coherence time approaching one second
journal, April 2013


Evolution of hyperfine parameters across a quantum critical point in CeRhIn 5
journal, October 2015


Epitaxial diamond encapsulation of metal microprobes for high pressure experiments
journal, November 2000


High-sensitivity NMR beyond 200,000 atmospheres of pressure
journal, August 2015


Electrical and Mechanical Properties of C 70 Fullerene and Graphite under High Pressures Studied Using Designer Diamond Anvils
journal, December 2000


Real Time Magnetic Field Sensing and Imaging Using a Single Spin in Diamond
journal, January 2011


Works referencing / citing this record:

Imaging stress and magnetism at high pressures using a nanoscale quantum sensor
text, January 2019


Imaging stress and magnetism at high pressures using a nanoscale quantum sensor
journal, December 2019


Imaging stress and magnetism at high pressures using a nanoscale quantum sensor
text, January 2019


Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers
journal, December 2019