skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser Weld Geometry and Microstructure of Cast Uranium-6 wt% Niobium Alloy

Abstract

Laser welding was performed on a U6 wt% Nb uranium alloy using a 400W solid state laser with welding speeds from 20 to 2,500 mm/s. This speed range spanned melt pool sizes from traditional welding to surface modification and additive manufacturing. With increasing scan speed, the ratio of weld length relative to depth and width increased, with melt pool lengths being more than 5x greater than the width and 10x greater than the depth at the highest speeds. Keyhole mode welds were shown to occur at low speeds, while conduction mode welds occurred at 700 mm/s or higher as the weld depth dropped off more rapidly than width at higher speeds. Microstructures that form at the boundary between the fusion zone and base metal were observed to have a nonconventional appearance consisting of interpenetrating dark and light contrast phases before cells or dendrites appear. Dendrites with secondary arms form from this boundary in keyhole welds and refine to no visible secondary arms near the weld center. Primary and secondary dendrite arms, where present, were shown to refine in size inversely with cooling rate raised to the 0.465 and 0.376 powers respectively. Dendrites were largely absent from the conduction mode weldsmore » at higher speeds, and were replaced by a banded microstructure, that appears to form by an oscillatory solidification front mechanism.« less

Authors:
 [1];  [1];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1458632
Report Number(s):
LLNL-TR-748364
900899
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Uranium Alloy; Laser Welding; Keyhole Transition; Weld Aspect Ratio; Microstructure; Dendrites; Cells; Solidification Banding; Thermal Fluids Modeling; Scan Speed; Cooling Rate

Citation Formats

Elmer, J. W., Wu, A. S., and Debroy, T. Laser Weld Geometry and Microstructure of Cast Uranium-6 wt% Niobium Alloy. United States: N. p., 2018. Web. doi:10.2172/1458632.
Elmer, J. W., Wu, A. S., & Debroy, T. Laser Weld Geometry and Microstructure of Cast Uranium-6 wt% Niobium Alloy. United States. doi:10.2172/1458632.
Elmer, J. W., Wu, A. S., and Debroy, T. Mon . "Laser Weld Geometry and Microstructure of Cast Uranium-6 wt% Niobium Alloy". United States. doi:10.2172/1458632. https://www.osti.gov/servlets/purl/1458632.
@article{osti_1458632,
title = {Laser Weld Geometry and Microstructure of Cast Uranium-6 wt% Niobium Alloy},
author = {Elmer, J. W. and Wu, A. S. and Debroy, T.},
abstractNote = {Laser welding was performed on a U6 wt% Nb uranium alloy using a 400W solid state laser with welding speeds from 20 to 2,500 mm/s. This speed range spanned melt pool sizes from traditional welding to surface modification and additive manufacturing. With increasing scan speed, the ratio of weld length relative to depth and width increased, with melt pool lengths being more than 5x greater than the width and 10x greater than the depth at the highest speeds. Keyhole mode welds were shown to occur at low speeds, while conduction mode welds occurred at 700 mm/s or higher as the weld depth dropped off more rapidly than width at higher speeds. Microstructures that form at the boundary between the fusion zone and base metal were observed to have a nonconventional appearance consisting of interpenetrating dark and light contrast phases before cells or dendrites appear. Dendrites with secondary arms form from this boundary in keyhole welds and refine to no visible secondary arms near the weld center. Primary and secondary dendrite arms, where present, were shown to refine in size inversely with cooling rate raised to the 0.465 and 0.376 powers respectively. Dendrites were largely absent from the conduction mode welds at higher speeds, and were replaced by a banded microstructure, that appears to form by an oscillatory solidification front mechanism.},
doi = {10.2172/1458632},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {1}
}