skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strain Tuning in Complex Oxide Epitaxial Films Using an Ultrathin Strontium Aluminate Buffer Layer

Abstract

A reliable method to apply biaxial strain over a wide range of values with minimal dislocation generation is critical for the study of strain dependent physical properties in oxide thin films and heterostructures. In this study, we systematically controlled the strain state in a perovskite manganite thin film by as much as 1% using a new ultrathin strain-releasing buffer layer Sr 3Al 2O 6, and observed signatures of accompanying magnetic and metal–insulator transitions. The near-zero strain state is achieved within five nanometers of buffer layer thickness, substantially thinner than any oxide epitaxial buffer layers that can continuously tune the film strain states. Furthermore, the majority of misfit dislocations were confined to the Sr 3Al 2O 6 layer, structurally decoupling defects in the film from the substrate.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [4];  [6];  [7];  [8];  [9];  [10]
  1. Stanford Univ., CA (United States). Dept. of Physics
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
  3. Cornell Univ., Ithaca, NY (United States). School of Electrical and Computer Engineering
  4. Stanford Univ., CA (United States). Dept. of Applied Physics
  5. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Univ. of Tokyo (Japan). Dept. of Advanced Materials Science
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Univ. of Tokyo (Japan). Dept. of Materials Engineering
  7. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Bristol Univ. (United Kingdom). H.H. Wills Physics Lab.
  8. Stanford Univ., CA (United States). Stanford Nano Shared Facilities
  9. Cornell Univ., Ithaca, NY (United States). School of Applied and Engineering Physics and Kavli Inst. at Cornell for Nanoscale Science
  10. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES); Stanford Univ., CA (United States). Dept. of Applied Physics
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Gordon and Betty Moore Foundation; National Science Foundation (NSF)
OSTI Identifier:
1457702
Grant/Contract Number:  
AC02-76SF00515; DGE-114747; DMR-1120296; GBMF4415
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physica Status Solidi rrl
Additional Journal Information:
Journal Volume: 12; Journal Issue: 3; Journal ID: ISSN 1862-6254
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; buffer layers; epitaxy; oxides; Sr3Al2O6; strain control; strain relaxation

Citation Formats

Lu, Di, Hikita, Yasuyuki, Baek, David J., Merz, Tyler A., Sato, Hiroki, Kim, Bongju, Yajima, Takeaki, Bell, Christopher, Vailionis, Arturas, Kourkoutis, Lena F., and Hwang, Harold Y. Strain Tuning in Complex Oxide Epitaxial Films Using an Ultrathin Strontium Aluminate Buffer Layer. United States: N. p., 2018. Web. doi:10.1002/pssr.201700339.
Lu, Di, Hikita, Yasuyuki, Baek, David J., Merz, Tyler A., Sato, Hiroki, Kim, Bongju, Yajima, Takeaki, Bell, Christopher, Vailionis, Arturas, Kourkoutis, Lena F., & Hwang, Harold Y. Strain Tuning in Complex Oxide Epitaxial Films Using an Ultrathin Strontium Aluminate Buffer Layer. United States. doi:10.1002/pssr.201700339.
Lu, Di, Hikita, Yasuyuki, Baek, David J., Merz, Tyler A., Sato, Hiroki, Kim, Bongju, Yajima, Takeaki, Bell, Christopher, Vailionis, Arturas, Kourkoutis, Lena F., and Hwang, Harold Y. Fri . "Strain Tuning in Complex Oxide Epitaxial Films Using an Ultrathin Strontium Aluminate Buffer Layer". United States. doi:10.1002/pssr.201700339. https://www.osti.gov/servlets/purl/1457702.
@article{osti_1457702,
title = {Strain Tuning in Complex Oxide Epitaxial Films Using an Ultrathin Strontium Aluminate Buffer Layer},
author = {Lu, Di and Hikita, Yasuyuki and Baek, David J. and Merz, Tyler A. and Sato, Hiroki and Kim, Bongju and Yajima, Takeaki and Bell, Christopher and Vailionis, Arturas and Kourkoutis, Lena F. and Hwang, Harold Y.},
abstractNote = {A reliable method to apply biaxial strain over a wide range of values with minimal dislocation generation is critical for the study of strain dependent physical properties in oxide thin films and heterostructures. In this study, we systematically controlled the strain state in a perovskite manganite thin film by as much as 1% using a new ultrathin strain-releasing buffer layer Sr3Al2O6, and observed signatures of accompanying magnetic and metal–insulator transitions. The near-zero strain state is achieved within five nanometers of buffer layer thickness, substantially thinner than any oxide epitaxial buffer layers that can continuously tune the film strain states. Furthermore, the majority of misfit dislocations were confined to the Sr3Al2O6 layer, structurally decoupling defects in the film from the substrate.},
doi = {10.1002/pssr.201700339},
journal = {Physica Status Solidi rrl},
issn = {1862-6254},
number = 3,
volume = 12,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: a) RHEED intensity oscillations during Nd0.5Sr0.5MnO3 growth on Sr3Al2O6 3.6nm/SrTiO3 (001). b) Reciprocal spacemap of Nd0.5Sr0.5MnO3 80nm/SrTiO3 (001) (top) and Nd0.5Sr0.5MnO3 80nm/Sr3Al2O6 3.6nm/ SrTiO3 (001) (bottom) at room temperature around the SrTiO3 Bragg peak (103). The solid lines are guides to the eye. The stronger and broader (103)more » peak for the x = 3.6 film than the x = 0 film is likely due to dislocation confinement in the buffer layer that increases the film crystallinity, and the higher total dislocation density (including those in the buffer layer) from the larger in-plane mismatch broadening the peak.[29] c) Nd0.5Sr0.5MnO3 lattice constants depending on Sr3Al2O6 thickness. The dotted lines are bulk in-plane (average of a' and b') and out-of-plane (c') pseudo-cubic lattice constants.« less

Save / Share:

Works referenced in this record:

Room-temperature ferroelectricity in strained SrTiO3
journal, August 2004

  • Haeni, J. H.; Irvin, P.; Chang, W.
  • Nature, Vol. 430, Issue 7001, p. 758-761
  • DOI: 10.1038/nature02773

Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites
journal, January 2004

  • Chu, Ming-Wen; Szafraniak, Izabela; Scholz, Roland
  • Nature Materials, Vol. 3, Issue 2
  • DOI: 10.1038/nmat1057

Domain epitaxy: A unified paradigm for thin film growth
journal, January 2003

  • Narayan, J.; Larson, B. C.
  • Journal of Applied Physics, Vol. 93, Issue 1
  • DOI: 10.1063/1.1528301

Little volume change in orbital ordering transition in manganite thin films
journal, February 2010


Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films
journal, April 2000

  • Tsui, F.; Smoak, M. C.; Nath, T. K.
  • Applied Physics Letters, Vol. 76, Issue 17
  • DOI: 10.1063/1.126363

Hysteretic Magnetoresistance in $\bf Nd_{1-{\ninmbi x}}Sr_{\ninmbi x}MnO_{3}$ Films with Controlled Carrier Density
journal, April 1996

  • Kasai, Masahiro; Kuwahara, Hideki; Moritomo, Yutaka
  • Japanese Journal of Applied Physics, Vol. 35, Issue Part 2, No. 4B
  • DOI: 10.1143/JJAP.35.L489

Doubling the critical temperature of La1.9Sr0.1CuO4 using epitaxial strain
journal, July 1998

  • Locquet, J. -P.; Perret, J.; Fompeyrine, J.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28810

Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers
journal, September 2016

  • Lu, Di; Baek, David J.; Hong, Seung Sae
  • Nature Materials, Vol. 15, Issue 12
  • DOI: 10.1038/nmat4749

Energetics of misfit- and threading-dislocation arrays in heteroepitaxial films
journal, July 1991


Voltage-controlled epitaxial strain in La0.7Sr0.3MnO3∕Pb(Mg1∕3Nb2∕3)O3-PbTiO3(001) films
journal, December 2005

  • Thiele, C.; Dörr, K.; Fähler, S.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2150273

A critical thickness condition for a strained compliant substrate/epitaxial film system
journal, July 1996

  • Freund, L. B.; Nix, W. D.
  • Applied Physics Letters, Vol. 69, Issue 2
  • DOI: 10.1063/1.117362

Metal-insulator transitions
journal, October 1998

  • Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori
  • Reviews of Modern Physics, Vol. 70, Issue 4, p. 1039-1263
  • DOI: 10.1103/RevModPhys.70.1039

Effect of substrate-induced strain on the charge-ordering transition in Nd0.5Sr0.5MnO3 thin films
journal, July 1999

  • Prellier, W.; Biswas, Amlan; Rajeswari, M.
  • Applied Physics Letters, Vol. 75, Issue 3
  • DOI: 10.1063/1.124387

Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study
journal, January 1998

  • Dong, Liang; Schnitker, Jurgen; Smith, Richard W.
  • Journal of Applied Physics, Vol. 83, Issue 1
  • DOI: 10.1063/1.366676

Influence of water on the physical properties of calcium aluminate oxide glasses
journal, March 1999


Epitaxial-strain-induced insulator-superconductor transition in undoped and lightly doped La2CuO4
journal, January 2001

  • Si, Weidong; Xi, X. X.
  • Applied Physics Letters, Vol. 78, Issue 2
  • DOI: 10.1063/1.1338966

Hole-concentration-induced transformation of the magnetic and orbital structures in Nd 1 x Sr x MnO 3
journal, October 1999


Strain-induced crossover of the metal-insulator transition in perovskite manganites
journal, February 2005


Commensurate to Incommensurate Charge Ordering and Its Real-Space Images in L a 0.5 C a 0.5 Mn O 3
journal, May 1996


Elasticity of CaTiO3, SrTiO3 and BaTiO3 perovskites up to 3.0 Gpa: the effect of crystallographic structure
journal, July 1993

  • Fischer, GeorgeJ.; Wang, Zichao; Karato, Shun-ichiro
  • Physics and Chemistry of Minerals, Vol. 20, Issue 2
  • DOI: 10.1007/BF00207202

The effect of dislocation contrast on x‐ray line broadening: A new approach to line profile analysis
journal, November 1996

  • Ungár, T.; Borbély, A.
  • Applied Physics Letters, Vol. 69, Issue 21
  • DOI: 10.1063/1.117951

Phase control through anisotropic strain in Nd0.5Sr0.5MnO3 thin films
journal, May 2005

  • Nakamura, Masao; Ogimoto, Yasushi; Tamaru, Hiroharu
  • Applied Physics Letters, Vol. 86, Issue 18
  • DOI: 10.1063/1.1923754

Tristrontium dialuminum hexaoxide: an intricate superstructure of perovskite
journal, November 1990

  • Alonso, J. A.; Rasines, I.; Soubeyroux, J. L.
  • Inorganic Chemistry, Vol. 29, Issue 23
  • DOI: 10.1021/ic00348a035

Study of strain fields at a-Si/c-Si interface
journal, April 2004

  • Yu, Zhiheng; Muller, David A.; Silcox, John
  • Journal of Applied Physics, Vol. 95, Issue 7
  • DOI: 10.1063/1.1649463

A First-Order Phase Transition Induced by a Magnetic Field
journal, November 1995


Novel Orbital Ordering Induced by Anisotropic Stress in a Manganite Thin Film
journal, January 2006


Strain Tuning of Ferroelectric Thin Films
journal, August 2007


Dislocations and strain relief in compositionally graded layers
journal, February 1993


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.