skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO 2 reduction

Abstract

Here, electrocatalytic CO 2 reduction to higher-value hydrocarbons beyond C 1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C 2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO 2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C 2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil through the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C 2+ to C 1 product ratio, with a highest C 2+ Faradaic efficiency of over 60% and H 2 below 20%, and a corresponding C 2+ current of more than 40 mA cm –2.

Authors:
ORCiD logo [1];  [2];  [1];  [2];  [1];  [3];  [3]; ORCiD logo [1]
  1. Harvard Univ., Cambridge, MA (United States)
  2. Stanford Univ., Stanford, CA (United States)
  3. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1457051
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Catalysis
Additional Journal Information:
Journal Volume: 1; Journal Issue: 2; Journal ID: ISSN 2520-1158
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jiang, Kun, Sandberg, Robert B., Akey, Austin J., Liu, Xinyan, Bell, David C., Norskov, Jens K., Chan, Karen, and Wang, Haotian. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. United States: N. p., 2018. Web. doi:10.1038/s41929-017-0009-x.
Jiang, Kun, Sandberg, Robert B., Akey, Austin J., Liu, Xinyan, Bell, David C., Norskov, Jens K., Chan, Karen, & Wang, Haotian. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. United States. doi:10.1038/s41929-017-0009-x.
Jiang, Kun, Sandberg, Robert B., Akey, Austin J., Liu, Xinyan, Bell, David C., Norskov, Jens K., Chan, Karen, and Wang, Haotian. Mon . "Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction". United States. doi:10.1038/s41929-017-0009-x. https://www.osti.gov/servlets/purl/1457051.
@article{osti_1457051,
title = {Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction},
author = {Jiang, Kun and Sandberg, Robert B. and Akey, Austin J. and Liu, Xinyan and Bell, David C. and Norskov, Jens K. and Chan, Karen and Wang, Haotian},
abstractNote = {Here, electrocatalytic CO2 reduction to higher-value hydrocarbons beyond C1 products is desirable for applications in energy storage, transportation and the chemical industry. Cu catalysts have shown the potential to catalyse C–C coupling for C2+ products, but still suffer from low selectivity in water. Here, we use density functional theory to determine the energetics of the initial C–C coupling steps on different Cu facets in CO2 reduction, and suggest that the Cu(100) and stepped (211) facets favour C2+ product formation over Cu(111). To demonstrate this, we report the tuning of facet exposure on Cu foil through the metal ion battery cycling method. Compared with the polished Cu foil, our 100-cycled Cu nanocube catalyst with exposed (100) facets presents a sixfold improvement in C2+ to C1 product ratio, with a highest C2+ Faradaic efficiency of over 60% and H2 below 20%, and a corresponding C2+ current of more than 40 mA cm–2.},
doi = {10.1038/s41929-017-0009-x},
journal = {Nature Catalysis},
number = 2,
volume = 1,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2018},
month = {Mon Jan 15 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes
journal, May 2003


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; J�nsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786