skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

Abstract

A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C 3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C 1-16 alkylene group, C 6-30arylene or heteroarylene group, or alkylene oxide group; and R 1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

Inventors:
; ; ;
Publication Date:
Research Org.:
The University of Massachusetts, Boston, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1455222
Patent Number(s):
9,991,443
Application Number:
15/056,395
Assignee:
The University of Massachusetts (Boston, MA) EFRC
DOE Contract Number:  
SC0001087
Resource Type:
Patent
Resource Relation:
Patent File Date: 2016 Feb 29
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Emrick, Todd, Russell, Thomas, Page, Zachariah, and Liu, Yao. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions. United States: N. p., 2018. Web.
Emrick, Todd, Russell, Thomas, Page, Zachariah, & Liu, Yao. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions. United States.
Emrick, Todd, Russell, Thomas, Page, Zachariah, and Liu, Yao. Tue . "Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions". United States. https://www.osti.gov/servlets/purl/1455222.
@article{osti_1455222,
title = {Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions},
author = {Emrick, Todd and Russell, Thomas and Page, Zachariah and Liu, Yao},
abstractNote = {A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {6}
}

Patent:

Save / Share:

Works referenced in this record:

One-Step Dip Coating of Zwitterionic Sulfobetaine Polymers on Hydrophobic and Hydrophilic Surfaces
journal, April 2014

  • Sundaram, Harihara S.; Han, Xia; Nowinski, Ann K.
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9, p. 6664-6671
  • DOI: 10.1021/am500362k

Work Function Control of Interfacial Buffer Layers for Efficient and Air-Stable Inverted Low-Bandgap Organic Photovoltaics
journal, January 2012

  • Worfolk, Brian J.; Hauger, Tate C.; Harris, Kenneth D.
  • Advanced Energy Materials, Vol. 2, Issue 3, p. 361-368
  • DOI: 10.1002/aenm.201100714

Toward High-Performance Semi-Transparent Polymer Solar Cells: Optimization of Ultra-Thin Light Absorbing Layer and Transparent Cathode Architecture
journal, November 2012

  • Chueh, Chu-Chen; Chien, Shang-Chieh; Yip, Hin-Lap
  • Advanced Energy Materials, Vol. 3, Issue 4, p. 417-423
  • DOI: 10.1002/aenm.201200679

Highly Efficient Inverted Polymer Solar Cells Based on an Alcohol Soluble Fullerene Derivative Interfacial Modification Material
journal, April 2012

  • Duan, Chunhui; Zhong, Chengmei; Liu, Chunchen
  • Chemistry of Materials, Vol. 24, Issue 9, p. 1682-1689
  • DOI: 10.1021/cm300824h

Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices
journal, January 2013

  • Duan, Chunhui; Zhang, Kai; Guan, Xing
  • Chemical Science, Vol. 4, Issue 3, p. 1298-1307
  • DOI: 10.1039/c3sc22258f

Achieving High Efficiency of PTB7-Based Polymer Solar Cells via Integrated Optimization of Both Anode and Cathode Interlayers
journal, February 2014

  • Gu, Cheng; Chen, Youchun; Zhang, Zhongbo
  • Advanced Energy Materials, Vol. 4, Issue 8, Article No. 1301771
  • DOI: 10.1002/aenm.201301771

Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells
journal, September 2013

  • Liu, Feng; Page, Zachariah A.; Duzhko, Volodimyr V.
  • Advanced Materials, Vol. 25, Issue 47, p. 6868-6873
  • DOI: 10.1002/adma.201302477

Dithienosilole? and Dibenzosilole?Thiophene Copolymers as Semiconductors for Organic Thin-Film Transistors
journal, July 2006

  • Usta, Hakan; Lu, Gang; Facchetti, Antonio
  • Journal of the American Chemical Society, Vol. 128, Issue 28, p. 9034-9035
  • DOI: 10.1021/ja062908g

Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer
journal, June 2011

  • Seo, Jung Hwa; Gutacker, Andrea; Sun, Yanming
  • Journal of the American Chemical Society, Vol. 133, Issue 22, p. 8416-8419
  • DOI: 10.1021/ja2037673

Enhanced Open-Circuit Voltage in High Performance Polymer/Fullerene Bulk-Heterojunction Solar Cells by Cathode Modification with a C60 Surfactant
journal, December 2011

  • O'Malley, Kevin M.; Li, Chang-Zhi; Yip, Hin-Lap
  • Advanced Energy Materials, Vol. 2, Issue 1, p. 82-86
  • DOI: 10.1002/aenm.201100522

A General Route to Enhance Polymer Solar Cell Performance using Plasmonic Nanoprisms
journal, March 2014

  • Yao, Kai; Salvador, Michael; Chueh, Chu-Chen
  • Advanced Energy Materials, Vol. 4, Issue 9, Article No. 1400206
  • DOI: 10.1002/aenm.201400206

[6,6]-Phenyl-C61-Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for High-Performance Polymer Solar Cells
journal, July 2013

  • Li, Shusheng; Lei, Ming; Lv, Menglan
  • Advanced Energy Materials, Vol. 3, Issue 12, p. 1569-1574
  • DOI: 10.1002/aenm.201300425

Enhancing the Performance of Polymer Photovoltaic Cells by Using an Alcohol Soluble Fullerene Derivative as the Interfacial Layer
journal, July 2013

  • Mei, Qiang; Li, Cuihong; Gong, Xue
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 16, p. 8076-8080
  • DOI: 10.1021/am402157b

Influence of the Ionic Functionalities of Polyfluorene Derivatives as a Cathode Interfacial Layer on Inverted Polymer Solar Cells
journal, April 2014

  • Kang, Rira; Oh, Seung-Hwan; Kim, Dong-Yu
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 9, p. 6227-6236
  • DOI: 10.1021/am500708k

8.9% Single-Stack Inverted Polymer Solar Cells with Electron-Rich Polymer Nanolayer-Modified Inorganic Electron-Collecting Buffer Layers
journal, January 2014

  • Woo, Sungho; Hyun Kim, Wook; Kim, Hwajeong
  • Advanced Energy Materials, Vol. 4, Issue 7, Article No. 1301692
  • DOI: 10.1002/aenm.201301692

Morphological Control for Highly Efficient Inverted Polymer Solar Cells Via the Backbone Design of Cathode Interlayer Materials
journal, April 2014

  • Zhang, Wenjun; Wu, Yulei; Bao, Qinye
  • Advanced Energy Materials, Vol. 4, Issue 12, Article No. 1400359
  • DOI: 10.1002/aenm.201400359

Conjugated Polymers from Naphthalene Bisimide
journal, December 2008

  • Guo, Xugang; Watson, Mark D.
  • Organic Letters, Vol. 10, Issue 23, p. 5333-5336
  • DOI: 10.1021/ol801918y

Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTT-C-T/PC71BM
journal, April 2014

  • Guo, Xia; Zhang, Maojie; Ma, Wei
  • Advanced Materials, Vol. 26, Issue 24, p. 4043-4049
  • DOI: 10.1002/adma.201400411

High performance polymer solar cells with a polar fullerene derivative as the cathode buffer layer
journal, January 2013

  • Li, Xiaodong; Zhang, Wenjun; Wu, Yulei
  • Journal of Materials Chemistry A, Vol. 1, Issue 40, p. 12413-12416
  • DOI: 10.1039/c3ta12875j

High-Efficiency Polymer Solar Cells Achieved by Doping Plasmonic Metallic Nanoparticles into Dual Charge Selecting Interfacial Layers to Enhance Light Trapping
journal, January 2013

  • Yang, Xi; Chueh, Chu-Chen; Li, Chang-Zhi
  • Advanced Energy Materials, Vol. 3, Issue 5, p. 666-673
  • DOI: 10.1002/aenm.201200726

A Universal Method to Produce Low-Work Function Electrodes for Organic Electronics
journal, April 2012


Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells
journal, September 2011

  • He, Zhicai; Zhong, Chengmei; Huang, Xun
  • Advanced Materials, Vol. 23, Issue 40, p. 4636-4643
  • DOI: 10.1002/adma.201103006

Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids
journal, January 2014

  • Page, Zachariah A.; Liu, Feng; Russell, Thomas P.
  • Chemical Science, Vol. 5, Issue 6, p. 2368-2373
  • DOI: 10.1039/C4SC00475B

Conjugated Thiophene-Containing Polymer Zwitterions: Direct Synthesis and Thin Film Electronic Properties
journal, December 2012

  • Page, Zachariah A.; Duzhko, Volodimyr V.; Emrick, Todd
  • Macromolecules, Vol. 46, Issue 2, p. 344-351
  • DOI: 10.1021/ma302232q

Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells
journal, August 2014

  • Page, Zachariah A.; Liu, Feng; Russell, Thomas P.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 2, p. 327-336
  • DOI: 10.1002/pola.27349

Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells
journal, January 2014

  • Zhang, Zhi-Guo; Qi, Boyuan; Jin, Zhiwen
  • Energy & Environmental Science, Vol. 7, Issue 6, p. 1966-1973
  • DOI: 10.1039/c4ee00022f