skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole

Abstract

Three singlet states, namely a closed-shell ground state and two excited states with 1ππ* and 1nσ* character, have been suggested to be responsible for the radiationless decay or photochemical reaction of photoexcited thioanisole. The correct interpretation of the electronic spectrum is critical for understanding the character of these low-lying excited states, but the experimental spectrum is yet to be fully interpreted. In the work reported here, we investigated the nature of those three states and a fourth singlet state of thioanisole using electronic structure calculations by multireference perturbation theory, by completely-renormalized equation-of-motion coupled cluster theory with single and double excitations and noniterative inclusion of connected triples (CR-EOM-CCSD(T)), and by linear-response time-dependent density functional theory (TDDFT). We clarified the assignment of the electronic spectrum by simulating it using a normal-mode sampling approach combined with TDDFT in the Tamm–Dancoff approximation (TDA). The understanding of the electronic states and of the accuracy of the electronic structure methods lays the foundation of our future work of constructing potential energy surfaces.

Authors:
ORCiD logo [1];  [1];  [1]
  1. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry. Chemical Theory Center. Supercomputing Inst.
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1455127
Grant/Contract Number:  
SC0008666
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 17; Journal Issue: 31; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Li, Shaohong L., Xu, Xuefei, and Truhlar, Donald G. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole. United States: N. p., 2015. Web. doi:10.1039/c5cp02461g.
Li, Shaohong L., Xu, Xuefei, & Truhlar, Donald G. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole. United States. doi:10.1039/c5cp02461g.
Li, Shaohong L., Xu, Xuefei, and Truhlar, Donald G. Fri . "Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole". United States. doi:10.1039/c5cp02461g. https://www.osti.gov/servlets/purl/1455127.
@article{osti_1455127,
title = {Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole},
author = {Li, Shaohong L. and Xu, Xuefei and Truhlar, Donald G.},
abstractNote = {Three singlet states, namely a closed-shell ground state and two excited states with 1ππ* and 1nσ* character, have been suggested to be responsible for the radiationless decay or photochemical reaction of photoexcited thioanisole. The correct interpretation of the electronic spectrum is critical for understanding the character of these low-lying excited states, but the experimental spectrum is yet to be fully interpreted. In the work reported here, we investigated the nature of those three states and a fourth singlet state of thioanisole using electronic structure calculations by multireference perturbation theory, by completely-renormalized equation-of-motion coupled cluster theory with single and double excitations and noniterative inclusion of connected triples (CR-EOM-CCSD(T)), and by linear-response time-dependent density functional theory (TDDFT). We clarified the assignment of the electronic spectrum by simulating it using a normal-mode sampling approach combined with TDDFT in the Tamm–Dancoff approximation (TDA). The understanding of the electronic states and of the accuracy of the electronic structure methods lays the foundation of our future work of constructing potential energy surfaces.},
doi = {10.1039/c5cp02461g},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 31,
volume = 17,
place = {United States},
year = {Fri Jun 05 00:00:00 EDT 2015},
month = {Fri Jun 05 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements
journal, October 1982

  • Francl, Michelle M.; Pietro, William J.; Hehre, Warren J.
  • The Journal of Chemical Physics, Vol. 77, Issue 7, p. 3654-3665
  • DOI: 10.1063/1.444267

NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

General atomic and molecular electronic structure system
journal, November 1993

  • Schmidt, Michael W.; Baldridge, Kim K.; Boatz, Jerry A.
  • Journal of Computational Chemistry, Vol. 14, Issue 11, p. 1347-1363
  • DOI: 10.1002/jcc.540141112

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527