skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi

Abstract

In this paper, we investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Finally, our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); LANL Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1441313
Alternate Identifier(s):
OSTI ID: 1429568
Report Number(s):
LA-UR-17-29407
Journal ID: ISSN 2469-9950
Grant/Contract Number:
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 10; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; magnetic order parameter; magnetoelastic effect; skyrmions; helimagnets; ultrasonic techniques

Citation Formats

Luo, Yongkang, Lin, Shi-Zeng, Fobes, D. M., Liu, Zhiqi, Bauer, E. D., Betts, J. B., Migliori, A., Thompson, J. D., Janoschek, M., and Maiorov, B. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.104423.
Luo, Yongkang, Lin, Shi-Zeng, Fobes, D. M., Liu, Zhiqi, Bauer, E. D., Betts, J. B., Migliori, A., Thompson, J. D., Janoschek, M., & Maiorov, B. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi. United States. doi:10.1103/PhysRevB.97.104423.
Luo, Yongkang, Lin, Shi-Zeng, Fobes, D. M., Liu, Zhiqi, Bauer, E. D., Betts, J. B., Migliori, A., Thompson, J. D., Janoschek, M., and Maiorov, B. Mon . "Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi". United States. doi:10.1103/PhysRevB.97.104423.
@article{osti_1441313,
title = {Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi},
author = {Luo, Yongkang and Lin, Shi-Zeng and Fobes, D. M. and Liu, Zhiqi and Bauer, E. D. and Betts, J. B. and Migliori, A. and Thompson, J. D. and Janoschek, M. and Maiorov, B.},
abstractNote = {In this paper, we investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Finally, our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.},
doi = {10.1103/PhysRevB.97.104423},
journal = {Physical Review B},
number = 10,
volume = 97,
place = {United States},
year = {Mon Mar 26 00:00:00 EDT 2018},
month = {Mon Mar 26 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 26, 2019
Publisher's Version of Record

Save / Share: