skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

Abstract

The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in other sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ORCiD logo; ; ; ; ; ; ORCiD logo « less
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1439668
Alternate Identifier(s):
OSTI ID: 1416221
Report Number(s):
PNNL-SA-131168
Journal ID: ISSN 0027-8424; 830403000
Grant/Contract Number:
AC05-76RL01830; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 115; Journal Issue: 4; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English

Citation Formats

Kjærbølling, Inge, Vesth, Tammi C., Frisvad, Jens C., Nybo, Jane L., Theobald, Sebastian, Kuo, Alan, Bowyer, Paul, Matsuda, Yudai, Mondo, Stephen, Lyhne, Ellen K., Kogle, Martin E., Clum, Alicia, Lipzen, Anna, Salamov, Asaf, Ngan, Chew Yee, Daum, Chris, Chiniquy, Jennifer, Barry, Kerrie, LaButti, Kurt, Haridas, Sajeet, Simmons, Blake A., Magnuson, Jon K., Mortensen, Uffe H., Larsen, Thomas O., Grigoriev, Igor V., Baker, Scott E., and Andersen, Mikael R.. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. United States: N. p., 2018. Web. doi:10.1073/pnas.1715954115.
Kjærbølling, Inge, Vesth, Tammi C., Frisvad, Jens C., Nybo, Jane L., Theobald, Sebastian, Kuo, Alan, Bowyer, Paul, Matsuda, Yudai, Mondo, Stephen, Lyhne, Ellen K., Kogle, Martin E., Clum, Alicia, Lipzen, Anna, Salamov, Asaf, Ngan, Chew Yee, Daum, Chris, Chiniquy, Jennifer, Barry, Kerrie, LaButti, Kurt, Haridas, Sajeet, Simmons, Blake A., Magnuson, Jon K., Mortensen, Uffe H., Larsen, Thomas O., Grigoriev, Igor V., Baker, Scott E., & Andersen, Mikael R.. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species. United States. doi:10.1073/pnas.1715954115.
Kjærbølling, Inge, Vesth, Tammi C., Frisvad, Jens C., Nybo, Jane L., Theobald, Sebastian, Kuo, Alan, Bowyer, Paul, Matsuda, Yudai, Mondo, Stephen, Lyhne, Ellen K., Kogle, Martin E., Clum, Alicia, Lipzen, Anna, Salamov, Asaf, Ngan, Chew Yee, Daum, Chris, Chiniquy, Jennifer, Barry, Kerrie, LaButti, Kurt, Haridas, Sajeet, Simmons, Blake A., Magnuson, Jon K., Mortensen, Uffe H., Larsen, Thomas O., Grigoriev, Igor V., Baker, Scott E., and Andersen, Mikael R.. Tue . "Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species". United States. doi:10.1073/pnas.1715954115.
@article{osti_1439668,
title = {Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species},
author = {Kjærbølling, Inge and Vesth, Tammi C. and Frisvad, Jens C. and Nybo, Jane L. and Theobald, Sebastian and Kuo, Alan and Bowyer, Paul and Matsuda, Yudai and Mondo, Stephen and Lyhne, Ellen K. and Kogle, Martin E. and Clum, Alicia and Lipzen, Anna and Salamov, Asaf and Ngan, Chew Yee and Daum, Chris and Chiniquy, Jennifer and Barry, Kerrie and LaButti, Kurt and Haridas, Sajeet and Simmons, Blake A. and Magnuson, Jon K. and Mortensen, Uffe H. and Larsen, Thomas O. and Grigoriev, Igor V. and Baker, Scott E. and Andersen, Mikael R.},
abstractNote = {The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in other sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.},
doi = {10.1073/pnas.1715954115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 4,
volume = 115,
place = {United States},
year = {Tue Jan 09 00:00:00 EST 2018},
month = {Tue Jan 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 9, 2019
Publisher's Version of Record

Save / Share:
  • Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.
  • The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. nigermore » has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a Δ laeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. As a result, we show that our systems genetics approach is a powerful tool to identify trait mutations.« less
  • Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers ofmore » heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. As a result, this strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.« less
  • Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisellamore » strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features—for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). Lastly, this study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria.« less