skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys

Abstract

We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in the $$\Omega_m-\sigma_8$$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $$S_8=\sigma_8(\Omega_m/0.3)^{0.5}$$ and $$\Omega_m$$ are smaller than the DES Y1 $$1-\sigma$$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $$\Omega_m$$ and $$S_8$$ are sub-dominant to the DES Y1 uncertainty. Furthermore, as cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [6];  [2];  [7];  [8];  [8];  [6];  [9];  [1];  [10];  [11];  [12];  [13];  [14];  [5] more »;  [15];  [16];  [17];  [18];  [19];  [12];  [12];  [20];  [7];  [21];  [12];  [6];  [22];  [23];  [11];  [5];  [14];  [15];  [7];  [22];  [15];  [24];  [12];  [21];  [25];  [26];  [16];  [23];  [12];  [27];  [28];  [1];  [29];  [30];  [28];  [21];  [31];  [12];  [32];  [22];  [33];  [23];  [34];  [35];  [6];  [24];  [12];  [17];  [24];  [36];  [18];  [37];  [38];  [39];  [40];  [17];  [20];  [18];  [41] « less
  1. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  2. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA; Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  3. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA; Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  4. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Institute of Physics, Laboratory of Astrophysics, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, Switzerland
  5. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  6. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  7. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  8. Steward Observatory, Department of Astronomy/, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  9. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
  10. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
  11. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra, Barcelona, Spain
  12. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  13. Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, PA 15312, USA
  14. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  15. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  16. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  17. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  18. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  19. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
  20. Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
  21. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
  22. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  23. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  24. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  25. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  26. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  27. Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  28. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  29. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany; Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  30. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  31. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  32. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil; Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  33. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  34. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain; Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra, Barcelona, Spain
  35. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  36. School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK
  37. Physics Department, Brandeis University, 415 South Street, Waltham, MA 02453, USA
  38. Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, E-13083-859, Campinas, SP, Brazil; Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ-20921-400, Brazil
  39. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  40. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  41. Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany; Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany; Fakultät für Physik, Universitäts-Sternwarte, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1439467
Alternate Identifier(s):
OSTI ID: 1479699
Report Number(s):
arXiv:1803.09795; FERMILAB-PUB-18-080
Journal ID: ISSN 0035-8711; 1664467; TRN: US1900619
Grant/Contract Number:  
AC02-07CH11359; AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 480; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; large-scale structure of Universe; cosmological parameters

Citation Formats

MacCrann, N., DeRose, J., Wechsler, R. H., Blazek, J., Gaztanaga, E., Crocce, M., Rykoff, E. S., Becker, M. R., Jain, B., Krause, E., Eifler, T. F., Gruen, D., Zuntz, J., Troxel, M. A., Elvin-Poole, J., Prat, J., Wang, M., Dodelson, S., Kravtsov, A., Fosalba, P., Busha, M. T., Evrard, A. E., Huterer, D., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bernstein, G. M., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Diehl, H. T., Doel, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hollowood, D., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kirk, D., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Walker, A. R., and Weller, J. DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys. United States: N. p., 2018. Web. doi:10.1093/mnras/sty1899.
MacCrann, N., DeRose, J., Wechsler, R. H., Blazek, J., Gaztanaga, E., Crocce, M., Rykoff, E. S., Becker, M. R., Jain, B., Krause, E., Eifler, T. F., Gruen, D., Zuntz, J., Troxel, M. A., Elvin-Poole, J., Prat, J., Wang, M., Dodelson, S., Kravtsov, A., Fosalba, P., Busha, M. T., Evrard, A. E., Huterer, D., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bernstein, G. M., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Diehl, H. T., Doel, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hollowood, D., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kirk, D., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Walker, A. R., & Weller, J. DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys. United States. doi:10.1093/mnras/sty1899.
MacCrann, N., DeRose, J., Wechsler, R. H., Blazek, J., Gaztanaga, E., Crocce, M., Rykoff, E. S., Becker, M. R., Jain, B., Krause, E., Eifler, T. F., Gruen, D., Zuntz, J., Troxel, M. A., Elvin-Poole, J., Prat, J., Wang, M., Dodelson, S., Kravtsov, A., Fosalba, P., Busha, M. T., Evrard, A. E., Huterer, D., Abbott, T. M. C., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bernstein, G. M., Brooks, D., Buckley-Geer, E., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cawthon, R., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Diehl, H. T., Doel, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruendl, R. A., Gutierrez, G., Hartley, W. G., Hollowood, D., Honscheid, K., Hoyle, B., James, D. J., Jeltema, T., Kirk, D., Kuehn, K., Kuropatkin, N., Lima, M., Maia, M. A. G., Marshall, J. L., Menanteau, F., Miquel, R., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Walker, A. R., and Weller, J. Mon . "DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys". United States. doi:10.1093/mnras/sty1899. https://www.osti.gov/servlets/purl/1439467.
@article{osti_1439467,
title = {DES Y1 Results: validating cosmological parameter estimation using simulated Dark Energy Surveys},
author = {MacCrann, N. and DeRose, J. and Wechsler, R. H. and Blazek, J. and Gaztanaga, E. and Crocce, M. and Rykoff, E. S. and Becker, M. R. and Jain, B. and Krause, E. and Eifler, T. F. and Gruen, D. and Zuntz, J. and Troxel, M. A. and Elvin-Poole, J. and Prat, J. and Wang, M. and Dodelson, S. and Kravtsov, A. and Fosalba, P. and Busha, M. T. and Evrard, A. E. and Huterer, D. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Annis, J. and Avila, S. and Bernstein, G. M. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and Cawthon, R. and Cunha, C. E. and D’Andrea, C. B. and da Costa, L. N. and Davis, C. and De Vicente, J. and Diehl, H. T. and Doel, P. and Frieman, J. and García-Bellido, J. and Gerdes, D. W. and Gruendl, R. A. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. and Honscheid, K. and Hoyle, B. and James, D. J. and Jeltema, T. and Kirk, D. and Kuehn, K. and Kuropatkin, N. and Lima, M. and Maia, M. A. G. and Marshall, J. L. and Menanteau, F. and Miquel, R. and Plazas, A. A. and Roodman, A. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Walker, A. R. and Weller, J.},
abstractNote = {We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in the $\Omega_m-\sigma_8$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $S_8=\sigma_8(\Omega_m/0.3)^{0.5}$ and $\Omega_m$ are smaller than the DES Y1 $1-\sigma$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $\Omega_m$ and $S_8$ are sub-dominant to the DES Y1 uncertainty. Furthermore, as cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.},
doi = {10.1093/mnras/sty1899},
journal = {Monthly Notices of the Royal Astronomical Society},
issn = {0035-8711},
number = 4,
volume = 480,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share: