skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrolyte with Low Polysulfide Solubility for Li-S Batteries

Journal Article · · ACS Applied Energy Materials
 [1];  [1];  [1];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)

Here, Li-S battery is one of the most promising next generation rechargeable battery technologies due to its high theoretical energy density and low material cost. While its success is impeded by the low energy efficiency and fast capacity fade primarily caused by the discharge intermediates, Li-polysulfides (PS), dissolution in the electrolyte. Mitigation of PS dissolution in electrolyte involves the search of new electrolyte solvent system that exhibits poor solvation to the PS while still have good solvation ability to the electrolyte salt for high ionic conductivity. Applying co-solvents with reduced solvating power but compatible with the state of art Li-S battery’s ether-based electrolyte is one of the most promising concepts. This route is also advantageous of having a low scale-up cost. With the aids of Quantum Chemical Calculation, we have identified high carbon-to-oxygen (C/O) ratio ethers as co-solvent in the new electrolytes that effectively impede PS dissolution while still maintaining high ionic conductivity. Significantly improved cycle life and cycling Coulombic efficiency are observed for Li-S cells using the new composite electrolytes. Anode analysis with different methods also demonstrate that reducing electrolyte’s PS solubility results in less sulfur total amount on the lithium anode surface and lower ratio of the longer-chain PS, which is probably a sign of suppressed side reactions between the anode and PS in the electrolyte.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
Grant/Contract Number:
SC0012704
OSTI ID:
1439302
Report Number(s):
BNL-205712-2018-JAAM
Journal Information:
ACS Applied Energy Materials, Vol. 1, Issue 6; ISSN 2574-0962
Publisher:
American Chemical Society (ACS)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Figures / Tables (12)