skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor

Abstract

Distance-of-Flight Mass Spectrometry (DOFMS) is a velocity-based, spatially dispersive MS technique in which ions are detected simultaneously along the plane of a spatially selective detector. In DOFMS, ions fly though the instrument and mass separate over a set period of time. The single flight time at which all ions are measured defines the specific m/z values that are detectable; the range of m/z values is dictated by the length of the spatially selective detector. However, because each packet of ions is detected at a single flight time, multiple groups of ions can fly through the instrument concurrently and be detected at a single detector. In this way, DOFMS experiments can be interleaved to perform several mass-separation experiments within a single DOF repetition period. Interleaved operation allows the orthogonal-acceleration region to be operated at a repetition rate higher than the reciprocal of the flight time, which improves the duty factor of the technique. In this paper, we consider the fundamental parameters of interleaved DOFMS and report first results.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1439038
Report Number(s):
PNNL-SA-96414
Journal ID: ISSN 1044-0305
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Journal of the American Society for Mass Spectrometry
Additional Journal Information:
Journal Volume: 24; Journal Issue: 11; Journal ID: ISSN 1044-0305
Publisher:
American Society for Mass Spectrometry
Country of Publication:
United States
Language:
English

Citation Formats

Gundlach-Graham, Alexander, Dennis, Elise A., Ray, Steven J., Enke, Christie G., Barinaga, Charles J., Koppenaal, David W., and Hieftje, Gary M. Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. United States: N. p., 2013. Web. doi:10.1007/s13361-013-0718-6.
Gundlach-Graham, Alexander, Dennis, Elise A., Ray, Steven J., Enke, Christie G., Barinaga, Charles J., Koppenaal, David W., & Hieftje, Gary M. Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor. United States. doi:10.1007/s13361-013-0718-6.
Gundlach-Graham, Alexander, Dennis, Elise A., Ray, Steven J., Enke, Christie G., Barinaga, Charles J., Koppenaal, David W., and Hieftje, Gary M. Wed . "Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor". United States. doi:10.1007/s13361-013-0718-6.
@article{osti_1439038,
title = {Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor},
author = {Gundlach-Graham, Alexander and Dennis, Elise A. and Ray, Steven J. and Enke, Christie G. and Barinaga, Charles J. and Koppenaal, David W. and Hieftje, Gary M.},
abstractNote = {Distance-of-Flight Mass Spectrometry (DOFMS) is a velocity-based, spatially dispersive MS technique in which ions are detected simultaneously along the plane of a spatially selective detector. In DOFMS, ions fly though the instrument and mass separate over a set period of time. The single flight time at which all ions are measured defines the specific m/z values that are detectable; the range of m/z values is dictated by the length of the spatially selective detector. However, because each packet of ions is detected at a single flight time, multiple groups of ions can fly through the instrument concurrently and be detected at a single detector. In this way, DOFMS experiments can be interleaved to perform several mass-separation experiments within a single DOF repetition period. Interleaved operation allows the orthogonal-acceleration region to be operated at a repetition rate higher than the reciprocal of the flight time, which improves the duty factor of the technique. In this paper, we consider the fundamental parameters of interleaved DOFMS and report first results.},
doi = {10.1007/s13361-013-0718-6},
journal = {Journal of the American Society for Mass Spectrometry},
issn = {1044-0305},
number = 11,
volume = 24,
place = {United States},
year = {2013},
month = {8}
}

Works referenced in this record:

Distance-of-Flight Mass Spectrometry: A New Paradigm for Mass Separation and Detection
journal, July 2012


Duty Cycle Improvement for a Quadrupole—Time-of-Flight Mass Spectrometer and its Use for Precursor Ion Scans
journal, December 2000

  • Chernushevich, Igor V.
  • European Journal of Mass Spectrometry, Vol. 6, Issue 6
  • DOI: 10.1255/ejms.377

Improvement of the duty cycle of an orthogonal acceleration time-of-flight mass spectrometer using ion gates
journal, January 2007

  • Brenton, A. G.; Krastev, T.; Rousell, D. J.
  • Rapid Communications in Mass Spectrometry, Vol. 21, Issue 18
  • DOI: 10.1002/rcm.3186

The design and performance of an ion trap storage—reflectron time-of-flight mass spectrometer
journal, February 1994

  • Chien, Benjamin M.; Michael, Steven M.; Lubman, David M.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 131
  • DOI: 10.1016/0168-1176(93)03877-O

Applications of a travelling wave-based radio-frequency-only stacked ring ion guide
journal, October 2004

  • Giles, Kevin; Pringle, Steven D.; Worthington, Kenneth R.
  • Rapid Communications in Mass Spectrometry, Vol. 18, Issue 20, p. 2401-2414
  • DOI: 10.1002/rcm.1641

Optimization of a quadrupole ion storage trap as a source for time-of-flight mass spectrometry: Optimization of QIT source for TOF-MS
journal, January 2012

  • Dangi, Beni B.; Ervin, Kent M.
  • Journal of Mass Spectrometry, Vol. 47, Issue 1
  • DOI: 10.1002/jms.2024

Extension of the focusable mass range in distance-of-flight mass spectrometry with multiple detectors: Extension of the focusable mass range in DOF-MS
journal, September 2012

  • Gundlach-Graham, Alexander W.; Dennis, Elise A.; Ray, Steven J.
  • Rapid Communications in Mass Spectrometry, Vol. 26, Issue 21
  • DOI: 10.1002/rcm.6379

Characterization of a third-generation Faraday-strip array detector coupled to a Mattauch-Herzog geometry mass spectrograph with a dc-glow discharge ionization source
journal, January 2010

  • Rubinshtein, Arnon A.; Schilling, Gregory D.; Ray, Steven J.
  • Journal of Analytical Atomic Spectrometry, Vol. 25, Issue 5
  • DOI: 10.1039/b913118c

Hadamard Transform Time-of-Flight Mass Spectrometry
journal, September 1998

  • Brock, Ansgar; Rodriguez, Nestor; Zare, Richard N.
  • Analytical Chemistry, Vol. 70, Issue 18
  • DOI: 10.1021/ac9804036

A novel ion trap that enables high duty cycle and wide m/z range on an orthogonal injection TOF mass spectrometer
journal, July 2009

  • Loboda, Alexander V.; Chernushevich, Igor V.
  • Journal of the American Society for Mass Spectrometry, Vol. 20, Issue 7
  • DOI: 10.1016/j.jasms.2009.03.018

An ion-storage time-of-flight mass spectrometer for analysis of electrospray ions
journal, September 1991

  • Boyle, James G.; Whitehouse, Craig M.; Fenn, John B.
  • Rapid Communications in Mass Spectrometry, Vol. 5, Issue 9
  • DOI: 10.1002/rcm.1290050906

Axial Ion Focusing in a Miniature Linear Ion Trap
journal, May 2007

  • Dobson, Gareth S.; Enke, Christie G.
  • Analytical Chemistry, Vol. 79, Issue 10
  • DOI: 10.1021/ac0620462

Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry
journal, August 2009

  • Bandura, Dmitry R.; Baranov, Vladimir I.; Ornatsky, Olga I.
  • Analytical Chemistry, Vol. 81, Issue 16
  • DOI: 10.1021/ac901049w

Achievement of Energy Focus for Distance-of-Flight Mass Spectrometry with Constant Momentum Acceleration and an Ion Mirror
journal, November 2007

  • Enke, Christie G.; Dobson, Gareth S.
  • Analytical Chemistry, Vol. 79, Issue 22
  • DOI: 10.1021/ac070638u

A Pulsed Mass Spectrometer with Time Dispersion
journal, August 1953

  • Wolff, M. M.; Stephens, W. E.
  • Review of Scientific Instruments, Vol. 24, Issue 8
  • DOI: 10.1063/1.1770801

Orthogonal-acceleration time-of-flight mass spectrometer
journal, May 1989

  • Dawson, J. H. J.; Guilhaus, M.
  • Rapid Communications in Mass Spectrometry, Vol. 3, Issue 5
  • DOI: 10.1002/rcm.1290030511

First Distance-of-Flight Instrument: Opening a New Paradigm in Mass Spectrometry
journal, January 2011

  • Graham, Alexander W. G.; Ray, Steven J.; Enke, Christie G.
  • Journal of The American Society for Mass Spectrometry, Vol. 22, Issue 1
  • DOI: 10.1007/s13361-010-0005-8

An interleaved comb ion deflection gate for m / z selection in time‐of‐flight mass spectrometry
journal, January 1996

  • Vlasak, Paul R.; Beussman, Douglas J.; Davenport, Michael R.
  • Review of Scientific Instruments, Vol. 67, Issue 1
  • DOI: 10.1063/1.1146553

Orthogonal acceleration time-of-flight mass spectrometry
journal, January 2000


Development of an Ion Store/Time-of-Flight Mass Spectrometer for the Analysis of Volatile Compounds in Air
journal, September 1997

  • Chambers, David M.; Grace, Louis I.; Andresen, Brian D.
  • Analytical Chemistry, Vol. 69, Issue 18
  • DOI: 10.1021/ac970102g

Time‐of‐Flight Mass Spectrometer with Improved Resolution
journal, December 1955

  • Wiley, W. C.; McLaren, I. H.
  • Review of Scientific Instruments, Vol. 26, Issue 12
  • DOI: 10.1063/1.1715212

Fourier transform time-of-flight mass spectrometry
journal, April 1986

  • Knorr, Fritz J.; Ajami, Massoud.; Chatfield, Dale A.
  • Analytical Chemistry, Vol. 58, Issue 4
  • DOI: 10.1021/ac00295a007

Evaluation of a 512-Channel Faraday-Strip Array Detector Coupled to an Inductively Coupled Plasma Mattauch−Herzog Mass Spectrograph
journal, July 2009

  • Schilling, Gregory D.; Ray, Steven J.; Rubinshtein, Arnon A.
  • Analytical Chemistry, Vol. 81, Issue 13
  • DOI: 10.1021/ac900640m

Duty cycle enhancement of an orthogonal acceleration TOF mass spectrometer using an axially-resonant excitation linear ion trap
journal, December 2006

  • Hashimoto, Yuichiro; Hasegawa, Hideki; Satake, Hiroyuki
  • Journal of the American Society for Mass Spectrometry, Vol. 17, Issue 12
  • DOI: 10.1016/j.jasms.2006.07.020

Time-of-flight mass spectrometry with an electrospray ion beam
journal, September 1992

  • Boyle, James G.; Whitehouse, Craig M.
  • Analytical Chemistry, Vol. 64, Issue 18
  • DOI: 10.1021/ac00042a011

Resolution and Mass Range Performance in Distance-of-Flight Mass Spectrometry with a Multichannel Focal-Plane Camera Detector
journal, November 2011

  • Graham, Alexander W. G.; Ray, Steven J.; Enke, Christie G.
  • Analytical Chemistry, Vol. 83, Issue 22
  • DOI: 10.1021/ac201876y

An introduction to quadrupole-time-of-flight mass spectrometry
journal, January 2001

  • Chernushevich, Igor V.; Loboda, Alexander V.; Thomson, Bruce A.
  • Journal of Mass Spectrometry, Vol. 36, Issue 8
  • DOI: 10.1002/jms.207

An electron impact storage ion source for time-of-flight mass spectrometers
journal, October 1989

  • Grix, R.; Grüner, U.; Li, G.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 93, Issue 3
  • DOI: 10.1016/0168-1176(89)80121-1