skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Localized concentration reversal of lithium during intercalation into nanoparticles

Abstract

Nanoparticulate electrodes, such as LixFePO4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual LixFePO4 nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation reveals inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. Furthermore, the findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [1];  [6];  [7]; ORCiD logo [5];  [5];  [8]; ORCiD logo [1]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States); Michigan State Univ., East Lansing, MI (United States)
  3. Univ. of Cambridge, Cambridge (United Kingdom); Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  5. Chinese Academy of Sciences, Ningbo (People's Republic of China)
  6. Univ. of Michigan, Ann Arbor, MI (United States)
  7. Univ. of Cambridge, Cambridge (United Kingdom)
  8. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1438434
Report Number(s):
BNL-203647-2018-JAAM
Journal ID: ISSN 2375-2548
Grant/Contract Number:  
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Zhang, Wei, Yu, Hui -Chia, Wu, Lijun, Liu, Hao, Abdellahi, Aziz, Qiu, Bao, Bai, Jianming, Orvananos, Bernardo, Strobridge, Fiona C., Zhou, Xufeng, Liu, Zhaoping, Ceder, Gerbrand, Zhu, Yimei, Thornton, Katsuyo, Grey, Clare P., and Wang, Feng. Localized concentration reversal of lithium during intercalation into nanoparticles. United States: N. p., 2018. Web. doi:10.1126/sciadv.aao2608.
Zhang, Wei, Yu, Hui -Chia, Wu, Lijun, Liu, Hao, Abdellahi, Aziz, Qiu, Bao, Bai, Jianming, Orvananos, Bernardo, Strobridge, Fiona C., Zhou, Xufeng, Liu, Zhaoping, Ceder, Gerbrand, Zhu, Yimei, Thornton, Katsuyo, Grey, Clare P., & Wang, Feng. Localized concentration reversal of lithium during intercalation into nanoparticles. United States. https://doi.org/10.1126/sciadv.aao2608
Zhang, Wei, Yu, Hui -Chia, Wu, Lijun, Liu, Hao, Abdellahi, Aziz, Qiu, Bao, Bai, Jianming, Orvananos, Bernardo, Strobridge, Fiona C., Zhou, Xufeng, Liu, Zhaoping, Ceder, Gerbrand, Zhu, Yimei, Thornton, Katsuyo, Grey, Clare P., and Wang, Feng. 2018. "Localized concentration reversal of lithium during intercalation into nanoparticles". United States. https://doi.org/10.1126/sciadv.aao2608. https://www.osti.gov/servlets/purl/1438434.
@article{osti_1438434,
title = {Localized concentration reversal of lithium during intercalation into nanoparticles},
author = {Zhang, Wei and Yu, Hui -Chia and Wu, Lijun and Liu, Hao and Abdellahi, Aziz and Qiu, Bao and Bai, Jianming and Orvananos, Bernardo and Strobridge, Fiona C. and Zhou, Xufeng and Liu, Zhaoping and Ceder, Gerbrand and Zhu, Yimei and Thornton, Katsuyo and Grey, Clare P. and Wang, Feng},
abstractNote = {Nanoparticulate electrodes, such as LixFePO4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual LixFePO4 nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation reveals inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. Furthermore, the findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes.},
doi = {10.1126/sciadv.aao2608},
url = {https://www.osti.gov/biblio/1438434}, journal = {Science Advances},
issn = {2375-2548},
number = 1,
volume = 4,
place = {United States},
year = {Fri Jan 12 00:00:00 EST 2018},
month = {Fri Jan 12 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemical extraction of lithium from LiMn2O4
journal, February 1984


Room-temperature miscibility gap in LixFePO4
journal, April 2006


Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
journal, July 2008


Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4
journal, May 2016


Lithium Batteries and Cathode Materials
journal, October 2004


Issues and challenges facing rechargeable lithium batteries
journal, November 2001


Direct Observation of Lithium Staging in Partially Delithiated LiFePO 4 at Atomic Resolution
journal, April 2011


Reciprocal Salt Flux Growth of LiFePO 4 Single Crystals with Controlled Defect Concentrations
journal, November 2013


Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries
journal, January 2010


Feeling the strain: enhancing ionic transport in olivine phosphate cathodes for Li- and Na-ion batteries through strain effects
journal, January 2016


Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes
journal, August 2014


Transient Phase Change in Two Phase Reaction between LiFePO 4 and FePO 4 under Battery Operation
journal, March 2013


Tracking lithium transport and electrochemical reactions in nanoparticles
journal, January 2012


Kinetics of non-equilibrium lithium incorporation in LiFePO4
journal, July 2011


Electron Microscopy Study of the LiFePO[sub 4] to FePO[sub 4] Phase Transition
journal, January 2006


Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge
journal, November 2011


Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014


Particle Size Dependence of the Ionic Diffusivity
journal, October 2010


A Critical Review of the Li Insertion Mechanisms in LiFePO 4 Electrodes
journal, January 2013


Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in LixCoO2
journal, January 1992


In Situ Observation of Random Solid Solution Zone in LiFePO 4 Electrode
journal, June 2014


Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO 2 Materials
journal, June 2013


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997


Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014


Size-Dependent Lithium Miscibility Gap in Nanoscale Li[sub 1−x]FePO[sub 4]
journal, January 2007


Free Energy of a Nonuniform System. I. Interfacial Free Energy
journal, February 1958


Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites
journal, January 2004


Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries
journal, September 2015


Designing the next generation high capacity battery electrodes
journal, January 2014


The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1
journal, February 2005


Strain Accommodation during Phase Transformations in Olivine-Based Cathodes as a Materials Selection Criterion for High-Power Rechargeable Batteries
journal, March 2007


Extended Solid Solutions and Coherent Transformations in Nanoscale Olivine Cathodes
journal, February 2014


High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries
journal, August 2016


Kinetics of Nanoparticle Interactions in Battery Electrodes
journal, January 2015


Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy
journal, May 2003


Atomistic modeling of site exchange defects in lithium iron phosphate and iron phosphate
journal, January 2012


Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles
journal, August 2016


Effect of a Size-Dependent Equilibrium Potential on Nano-LiFePO 4 Particle Interactions
journal, January 2015


Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling
journal, September 2015


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005


Particle-Level Modeling of the Charge-Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes
journal, January 2014


Nonequilibrium Structural Dynamics of Nanoparticles in LiNi 1/2 Mn 3/2 O 4 Cathode under Operando Conditions
journal, August 2014


Direct Evidence of Concurrent Solid-Solution and Two-Phase Reactions and the Nonequilibrium Structural Evolution of LiFePO 4
journal, April 2012


Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries
journal, June 2003


Study of the LiFePO 4 /FePO 4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy
journal, November 2006


Phase Transformation Dynamics in Porous Battery Electrodes
journal, November 2014


Layered Lithium Insertion Material of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 for Lithium-Ion Batteries
journal, July 2001


Lithium Batteries and Cathode Materials
journal, December 2004


Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFexCo1-xPO4
text, January 2016


Phase Transformation Dynamics in Porous Battery Electrodes
preprint, January 2014


Lithium Batteries and Cathode Materials
journal, December 2004


Rate-Induced Solubility and Suppression of the First-Order Phase Transition in Olivine LiFePO 4
journal, April 2014


Extended Solid Solutions and Coherent Transformations in Nanoscale Olivine Cathodes
journal, February 2014


Nonequilibrium Structural Dynamics of Nanoparticles in LiNi 1/2 Mn 3/2 O 4 Cathode under Operando Conditions
journal, August 2014


Atomic-Scale Observation of Lithiation Reaction Front in Nanoscale SnO 2 Materials
journal, June 2013


Issues and challenges facing rechargeable lithium batteries
journal, November 2001


Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy
journal, May 2003


Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries
journal, September 2015


Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005


Room-temperature miscibility gap in LixFePO4
journal, April 2006


Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4
journal, July 2008


The thermodynamic stability of intermediate solid solutions in LiFePO 4 nanoparticles
journal, January 2016


Elastic properties of olivine Li x FePO 4 from first principles
journal, May 2006


Particle-Level Modeling of the Charge-Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes
journal, January 2014


Works referencing / citing this record:

Revealing the Atomic Origin of Heterogeneous Li‐Ion Diffusion by Probing Na
journal, May 2019


Interfacial Lattice‐Strain‐Driven Generation of Oxygen Vacancies in an Aerobic‐Annealed TiO 2 (B) Electrode
journal, November 2019


Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 Oxides
journal, February 2019


Multi-electron transfer enabled by topotactic reaction in magnetite
journal, April 2019


A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine
journal, December 2019


Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries
journal, October 2018


Multi-electron transfer enabled by topotactic reaction in magnetite
journal, April 2019


Controllable two-dimensional movement and redistribution of lithium ions in metal oxides
journal, June 2019