skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

Abstract

Long wavelength vibrational modes in the ferromagnetic semiconductor Ga 0.91M n0.09As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Lastly, our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

Authors:
 [1];  [2];  [3];  [1];  [4];  [4];  [4];  [5];  [5];  [6];  [4];  [4];  [4];  [7];  [8];  [9];  [1];  [10]
  1. Max Planck Advanced Study Group at CFEL/DESY, Hamburg (Germany); Max-Planck-Institut fur medizinische Forschung, Heidelberg (Germany)
  2. Max Planck Advanced Study Group at CFEL/DESY, Hamburg (Germany); Max-Planck-Institut fur medizinische Forschung, Heidelberg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany)
  3. Max Planck Advanced Study Group at CFEL/DESY, Hamburg (Germany); Max Planck Institute for Nuclear Physics, Heidelberg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Chinese Academy of Sciences, Beijing (People's Republic of China)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States); Paul Scherrer Inst. (PSI), Villigen (Switzerland)
  7. PNSensor GmbH, Munchen (Germany)
  8. Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Carl von Ossietzky Univ. Oldenburg, Oldenburg (Germany)
  9. Max Planck Advanced Study Group at CFEL/DESY, Hamburg (Germany); PNSensor GmbH, Munchen (Germany); Max Planck Institute for Extraterrestrial Physics, Garching (Germany); Max-Planck-Society Semiconductor Lab., Munchen (Germany)
  10. Max Planck Advanced Study Group at CFEL/DESY, Hamburg (Germany); Max Planck Institute for Nuclear Physics, Heidelberg (Germany); Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1437235
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 10; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Krasniqi, Faton S., Zhong, Yinpeng, Epp, S. W., Foucar, L., Trigo, M., Chen, J., Reis, D. A., Wang, H. L., Zhao, J. H., Lemke, H. T., Zhu, D., Chollet, M., Fritz, D. M., Hartmann, R., Englert, L., Struder, L., Schlichting, I., and Ullrich, J. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities. United States: N. p., 2018. Web. doi:10.1103/physrevlett.120.105501.
Krasniqi, Faton S., Zhong, Yinpeng, Epp, S. W., Foucar, L., Trigo, M., Chen, J., Reis, D. A., Wang, H. L., Zhao, J. H., Lemke, H. T., Zhu, D., Chollet, M., Fritz, D. M., Hartmann, R., Englert, L., Struder, L., Schlichting, I., & Ullrich, J. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities. United States. doi:10.1103/physrevlett.120.105501.
Krasniqi, Faton S., Zhong, Yinpeng, Epp, S. W., Foucar, L., Trigo, M., Chen, J., Reis, D. A., Wang, H. L., Zhao, J. H., Lemke, H. T., Zhu, D., Chollet, M., Fritz, D. M., Hartmann, R., Englert, L., Struder, L., Schlichting, I., and Ullrich, J. Thu . "Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities". United States. doi:10.1103/physrevlett.120.105501.
@article{osti_1437235,
title = {Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities},
author = {Krasniqi, Faton S. and Zhong, Yinpeng and Epp, S. W. and Foucar, L. and Trigo, M. and Chen, J. and Reis, D. A. and Wang, H. L. and Zhao, J. H. and Lemke, H. T. and Zhu, D. and Chollet, M. and Fritz, D. M. and Hartmann, R. and Englert, L. and Struder, L. and Schlichting, I. and Ullrich, J.},
abstractNote = {Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91Mn0.09As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Lastly, our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.},
doi = {10.1103/physrevlett.120.105501},
journal = {Physical Review Letters},
number = 10,
volume = 120,
place = {United States},
year = {Thu Mar 08 00:00:00 EST 2018},
month = {Thu Mar 08 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 8, 2019
Publisher's Version of Record

Save / Share: