skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

Abstract

Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisationmore » techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [2];  [4];  [5];  [6]; ORCiD logo [7];  [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [12]; ORCiD logo [13];  [14];  [15]; ORCiD logo [16];  [17]; ORCiD logo [18] more »; ORCiD logo [19];  [17]; ORCiD logo [20];  [21];  [22]; ORCiD logo [14]; ORCiD logo [14];  [23]; ORCiD logo [19];  [24]; ORCiD logo [25] « less
  1. Utrecht Univ., Utrecht (The Netherlands). Inst. for Marine and Atmospheric Research (IMAU); Univ. Libre de Bruxelles, Brussels (Belgium). Lab. de Glaciologie
  2. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  3. Open Univ., Milton Keynes (United Kingdom). School of Environment, Earth & Ecosystem Sciences
  4. Univ. of Tokyo (Japan). Atmosphere Ocean Research Inst.
  5. Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.
  6. Potsdam Inst. for Climate Impact Research, Potsdam (Germany)
  7. Univ. Grenoble Alpes, Grenoble (France)
  8. Victoria Univ. of Wellington (New Zealand). Antarctic Research Centre
  9. Univ. of Reading, Reading (United Kingdom). Dept. of Meteorology; Met Office Hadley Centre, Exeter (United Kingdom)
  10. Hokkaido Univ., Sapporo (Japan). Inst. of Low Temperature Science
  11. Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany); Univ. of Bremen (Germany)
  12. Vrije Univ., Brussel (Belgium)
  13. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Climate Change Science Inst.; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Sciences and Engineering Division
  14. California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.
  15. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); National Center for Atmospheric Research, Boulder, CO (United States)
  16. Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette (France)
  17. Univ. of Bristol, Bristol (United Kingdom)
  18. Univ. of California, Irvine, CA (United States)
  19. Univ. Libre de Bruxelles, Brussels (Belgium). Lab. de Glaciologie
  20. Danish Meteorological Inst., Copenhagen (Denmark); Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)
  21. Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany)
  22. Japan Agency for Marine-Earth Science and Technology, Yokohama (Japan)
  23. Univ. of Leeds, Leeds (United Kingdom). School of Earth and Environment
  24. Utrecht Univ., Utrecht (The Netherlands). Inst. for Marine and Atmospheric Research (IMAU)
  25. Max Planck Inst. for Meteorology, Hamburg (Germany)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23); National Aeronautic and Space Administration (NASA); National Science Foundation (NSF)
OSTI Identifier:
1436954
Grant/Contract Number:  
AC05-00OR22725; 610055; 57001; CPER07_13 CIRA; 2016-016066; 17H06104; 16H02224; 7K05664
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Cryosphere (Online)
Additional Journal Information:
Journal Volume: 12; Journal Issue: 4; Journal ID: ISSN 1994-0424
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Goelzer, Heiko, Nowicki, Sophie, Edwards, Tamsin, Beckley, Matthew, Abe-Ouchi, Ayako, Aschwanden, Andy, Calov, Reinhard, Gagliardini, Olivier, Gillet-Chaulet, Fabien, Golledge, Nicholas R., Gregory, Jonathan, Greve, Ralf, Humbert, Angelika, Huybrechts, Philippe, Kennedy, Joseph H., Larour, Eric, Lipscomb, William H., Le clec'h, Sebastien, Lee, Victoria, Morlighem, Mathieu, Pattyn, Frank, Payne, Antony J., Rodehacke, Christian, Ruckamp, Martin, Saito, Fuyuki, Schlegel, Nicole, Seroussi, Helene, Shepherd, Andrew, Sun, Sainan, van de Wal, Roderik, and Ziemen, Florian A. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. United States: N. p., 2018. Web. doi:10.5194/tc-12-1433-2018.
Goelzer, Heiko, Nowicki, Sophie, Edwards, Tamsin, Beckley, Matthew, Abe-Ouchi, Ayako, Aschwanden, Andy, Calov, Reinhard, Gagliardini, Olivier, Gillet-Chaulet, Fabien, Golledge, Nicholas R., Gregory, Jonathan, Greve, Ralf, Humbert, Angelika, Huybrechts, Philippe, Kennedy, Joseph H., Larour, Eric, Lipscomb, William H., Le clec'h, Sebastien, Lee, Victoria, Morlighem, Mathieu, Pattyn, Frank, Payne, Antony J., Rodehacke, Christian, Ruckamp, Martin, Saito, Fuyuki, Schlegel, Nicole, Seroussi, Helene, Shepherd, Andrew, Sun, Sainan, van de Wal, Roderik, & Ziemen, Florian A. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. United States. doi:10.5194/tc-12-1433-2018.
Goelzer, Heiko, Nowicki, Sophie, Edwards, Tamsin, Beckley, Matthew, Abe-Ouchi, Ayako, Aschwanden, Andy, Calov, Reinhard, Gagliardini, Olivier, Gillet-Chaulet, Fabien, Golledge, Nicholas R., Gregory, Jonathan, Greve, Ralf, Humbert, Angelika, Huybrechts, Philippe, Kennedy, Joseph H., Larour, Eric, Lipscomb, William H., Le clec'h, Sebastien, Lee, Victoria, Morlighem, Mathieu, Pattyn, Frank, Payne, Antony J., Rodehacke, Christian, Ruckamp, Martin, Saito, Fuyuki, Schlegel, Nicole, Seroussi, Helene, Shepherd, Andrew, Sun, Sainan, van de Wal, Roderik, and Ziemen, Florian A. Thu . "Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison". United States. doi:10.5194/tc-12-1433-2018. https://www.osti.gov/servlets/purl/1436954.
@article{osti_1436954,
title = {Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison},
author = {Goelzer, Heiko and Nowicki, Sophie and Edwards, Tamsin and Beckley, Matthew and Abe-Ouchi, Ayako and Aschwanden, Andy and Calov, Reinhard and Gagliardini, Olivier and Gillet-Chaulet, Fabien and Golledge, Nicholas R. and Gregory, Jonathan and Greve, Ralf and Humbert, Angelika and Huybrechts, Philippe and Kennedy, Joseph H. and Larour, Eric and Lipscomb, William H. and Le clec'h, Sebastien and Lee, Victoria and Morlighem, Mathieu and Pattyn, Frank and Payne, Antony J. and Rodehacke, Christian and Ruckamp, Martin and Saito, Fuyuki and Schlegel, Nicole and Seroussi, Helene and Shepherd, Andrew and Sun, Sainan and van de Wal, Roderik and Ziemen, Florian A.},
abstractNote = {Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. Here, the goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.},
doi = {10.5194/tc-12-1433-2018},
journal = {The Cryosphere (Online)},
issn = {1994-0424},
number = 4,
volume = 12,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
journal, January 2013

  • Bindschadler, Robert A.; Nowicki, Sophie; Abe-Ouchi, Ayako
  • Journal of Glaciology, Vol. 59, Issue 214
  • DOI: 10.3189/2013JoG12J125

Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers
journal, July 2016

  • Machguth, Horst; Thomsen, Henrik H.; Weidick, Anker
  • Journal of Glaciology, Vol. 62, Issue 235
  • DOI: 10.1017/jog.2016.75

Hindcasting to measure ice sheet model sensitivity to initial states
journal, January 2013

  • Aschwanden, A.; Aðalgeirsdóttir, G.; Khroulev, C.
  • The Cryosphere, Vol. 7, Issue 4
  • DOI: 10.5194/tc-7-1083-2013

The multi-millennial Antarctic commitment to future sea-level rise
journal, October 2015

  • Golledge, N. R.; Kowalewski, D. E.; Naish, T. R.
  • Nature, Vol. 526, Issue 7573
  • DOI: 10.1038/nature15706

Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling
journal, January 2009

  • Ettema, Janneke; van den Broeke, Michiel R.; van Meijgaard, Erik
  • Geophysical Research Letters, Vol. 36, Issue 12
  • DOI: 10.1029/2009GL038110

Radiostratigraphy and age structure of the Greenland Ice Sheet: GREENLAND RADIOSTRATIGRAPHY
journal, February 2015

  • MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.
  • Journal of Geophysical Research: Earth Surface, Vol. 120, Issue 2
  • DOI: 10.1002/2014JF003215

Partitioning Recent Greenland Mass Loss
journal, November 2009


Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

Greenland flow variability from ice-sheet-wide velocity mapping
journal, January 2010


Hydrostatic grounding line parameterization in ice sheet models
journal, January 2014


800,000 Years of Abrupt Climate Variability
journal, September 2011


Dependence of century-scale projections of the Greenland ice sheet on its thermal regime
journal, January 2013

  • Seroussi, H.; Morlighem, M.; Rignot, E.
  • Journal of Glaciology, Vol. 59, Issue 218
  • DOI: 10.3189/2013JoG13J054

A 60 000 year Greenland stratigraphic ice core chronology
journal, January 2008

  • Svensson, A.; Andersen, K. K.; Bigler, M.
  • Climate of the Past, Vol. 4, Issue 1
  • DOI: 10.5194/cp-4-47-2008

Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model
journal, January 2017


Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet
journal, January 2013


A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to Antarctica
journal, January 2012


The δ 18 O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability
journal, November 1997

  • Johnsen, Sigfús J.; Clausen, Henrik B.; Dansgaard, Willi
  • Journal of Geophysical Research: Oceans, Vol. 102, Issue C12
  • DOI: 10.1029/97JC00167

Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning
journal, September 2014

  • Golledge, N. R.; Menviel, L.; Carter, L.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6107

Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data
journal, November 2014

  • Velicogna, I.; Sutterley, T. C.; van den Broeke, M. R.
  • Geophysical Research Letters, Vol. 41, Issue 22
  • DOI: 10.1002/2014GL061052

An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11
journal, January 2016

  • Larour, Eric; Utke, Jean; Bovin, Anton
  • Geoscientific Model Development, Vol. 9, Issue 11
  • DOI: 10.5194/gmd-9-3907-2016

Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise
journal, August 2013

  • Shannon, S. R.; Payne, A. J.; Bartholomew, I. D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 35
  • DOI: 10.1073/pnas.1212647110

Decadal-scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM: GREENLAND DECADAL ICE FLOW SENSITIVITY
journal, May 2013

  • Schlegel, N-J.; Larour, E.; Seroussi, H.
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 2
  • DOI: 10.1002/jgrf.20062

Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade
journal, May 2011

  • Price, S. F.; Payne, A. J.; Howat, I. M.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 22
  • DOI: 10.1073/pnas.1017313108

Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data
journal, January 2009

  • Bales, Roger C.; Guo, Qinghua; Shen, Dayong
  • Journal of Geophysical Research, Vol. 114, Issue D6
  • DOI: 10.1029/2008JD011208

Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model
journal, January 2012


The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets
journal, January 2014


A mass conservation approach for mapping glacier ice thickness: BALANCE THICKNESS
journal, October 2011

  • Morlighem, M.; Rignot, E.; Seroussi, H.
  • Geophysical Research Letters, Vol. 38, Issue 19
  • DOI: 10.1029/2011GL048659

An efficient regional energy-moisture balance model for simulation of the Greenland Ice Sheet response to climate change
journal, January 2010


BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation
journal, November 2017

  • Morlighem, M.; Williams, C. N.; Rignot, E.
  • Geophysical Research Letters, Vol. 44, Issue 21
  • DOI: 10.1002/2017GL074954

Greenland Ice Sheet Mass Balance Reconstruction. Part II: Surface Mass Balance (1840–2010)
journal, September 2013


Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming
journal, January 2015


Millennial total sea-level commitments projected with the Earth system model of intermediate complexity LOVECLIM
journal, October 2012


Complex Greenland outlet glacier flow captured
journal, February 2016

  • Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10524

A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications
journal, January 2014

  • de Boer, B.; Stocchi, P.; van de Wal, R. S. W.
  • Geoscientific Model Development, Vol. 7, Issue 5
  • DOI: 10.5194/gmd-7-2141-2014

Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM): ICE SHEET SYSTEM MODEL
journal, March 2012

  • Larour, E.; Seroussi, H.; Morlighem, M.
  • Journal of Geophysical Research: Earth Surface, Vol. 117, Issue F1
  • DOI: 10.1029/2011JF002140

Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)
journal, January 2016

  • Asay-Davis, Xylar S.; Cornford, Stephen L.; Durand, Gaël
  • Geoscientific Model Development, Vol. 9, Issue 7
  • DOI: 10.5194/gmd-9-2471-2016

Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6
journal, January 2016

  • Nowicki, Sophie M. J.; Payne, Anthony; Larour, Eric
  • Geoscientific Model Development, Vol. 9, Issue 12
  • DOI: 10.5194/gmd-9-4521-2016

SeaRISE experiments revisited: potential sources of spread in multi-model projections of the Greenland ice sheet
journal, January 2016


Parameter and state estimation with a time-dependent adjoint marine ice sheet model
journal, January 2013


Optimal initial conditions for coupling ice sheet models to Earth system models: PEREGO ET AL.
journal, September 2014

  • Perego, Mauro; Price, Stephen; Stadler, Georg
  • Journal of Geophysical Research: Earth Surface, Vol. 119, Issue 9
  • DOI: 10.1002/2014JF003181

Ice flow in Greenland for the International Polar Year 2008-2009: ICE FLOW GREENLAND 2009
journal, June 2012

  • Rignot, E.; Mouginot, J.
  • Geophysical Research Letters, Vol. 39, Issue 11
  • DOI: 10.1029/2012GL051634

Contemporary (1960–2012) Evolution of the Climate and Surface Mass Balance of the Greenland Ice Sheet
journal, November 2013

  • van Angelen, J. H.; van den Broeke, M. R.; Wouters, B.
  • Surveys in Geophysics, Vol. 35, Issue 5
  • DOI: 10.1007/s10712-013-9261-z

Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003–2012)
journal, January 2016

  • Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.
  • The Cryosphere, Vol. 10, Issue 5
  • DOI: 10.5194/tc-10-1965-2016

Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica
journal, June 2004


Ice flux divergence anomalies on 79north Glacier, Greenland: THE 79NORTH GLACIER
journal, May 2011

  • Seroussi, H.; Morlighem, M.; Rignot, E.
  • Geophysical Research Letters, Vol. 38, Issue 9
  • DOI: 10.1029/2011GL047338

Sensitivity of Greenland Ice Sheet Projections to Model Formulations
journal, January 2013

  • Goelzer, H.; Huybrechts, P.; Fürst, J. J.
  • Journal of Glaciology, Vol. 59, Issue 216
  • DOI: 10.3189/2013JoG12J182

On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing
journal, December 1992

  • Imbrie, J.; Boyle, E. A.; Clemens, S. C.
  • Paleoceanography, Vol. 7, Issue 6
  • DOI: 10.1029/92PA02253

Role of model initialization for projections of 21st-century Greenland ice sheet mass loss
journal, January 2014

  • Ađalgeirsdóttir, G.; Aschwanden, A.; Khroulev, C.
  • Journal of Glaciology, Vol. 60, Issue 222
  • DOI: 10.3189/2014JoG13J202

A new present-day temperature parameterization for Greenland
journal, January 2009

  • Fausto, Robert S.; Ahlstrøm, Andreas P.; Van As, Dirk
  • Journal of Glaciology, Vol. 55, Issue 189
  • DOI: 10.3189/002214309788608985

Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations: FLOW SPEED IN THE ANTARCTIC ICE SHEET
journal, July 2015

  • Arthern, Robert J.; Hindmarsh, Richard C. A.; Williams, C. Rosie
  • Journal of Geophysical Research: Earth Surface, Vol. 120, Issue 7
  • DOI: 10.1002/2014JF003239

Ice sheet grounding line dynamics: Steady states, stability, and hysteresis
journal, January 2007


Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS
journal, March 2016


An improved mass budget for the Greenland ice sheet
journal, February 2014

  • Enderlin, Ellyn M.; Howat, Ian M.; Jeong, Seongsu
  • Geophysical Research Letters, Vol. 41, Issue 3
  • DOI: 10.1002/2013GL059010

Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP
journal, January 2012


Initialization of an ice-sheet model for present-day Greenland
journal, January 2015

  • Lee, Victoria; Cornford, Stephen L.; Payne, Antony J.
  • Annals of Glaciology, Vol. 56, Issue 70
  • DOI: 10.3189/2015AoG70A121

A new bed elevation dataset for Greenland
journal, January 2013

  • Bamber, J. L.; Griggs, J. A.; Hurkmans, R. T. W. L.
  • The Cryosphere, Vol. 7, Issue 2
  • DOI: 10.5194/tc-7-499-2013

Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica: SEARISE ANTARCTICA
journal, June 2013

  • Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 2
  • DOI: 10.1002/jgrf.20081

Deeply incised submarine glacial valleys beneath the Greenland ice sheet
journal, May 2014

  • Morlighem, M.; Rignot, E.; Mouginot, J.
  • Nature Geoscience, Vol. 7, Issue 6
  • DOI: 10.1038/ngeo2167

Simulating the Greenland ice sheet under present-day and palaeo constraints including a new discharge parameterization
journal, January 2015


Recent Progress in Greenland Ice Sheet Modelling
journal, November 2017

  • Goelzer, Heiko; Robinson, Alexander; Seroussi, Helene
  • Current Climate Change Reports, Vol. 3, Issue 4
  • DOI: 10.1007/s40641-017-0073-y

Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003–2012)
journal, January 2016

  • Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne
  • The Cryosphere, Vol. 10, Issue 3
  • DOI: 10.5194/tc-10-1259-2016

Dynamical processes involved in the retreat of marine ice sheets
journal, January 2001


Description of a hybrid ice sheet-shelf model, and application to Antarctica
journal, January 2012


A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015)
journal, January 2016

  • Noël, Brice; van de Berg, Willem Jan; Machguth, Horst
  • The Cryosphere, Vol. 10, Issue 5
  • DOI: 10.5194/tc-10-2361-2016

Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM)
journal, January 2008

  • Pattyn, F.; Perichon, L.; Aschwanden, A.
  • The Cryosphere, Vol. 2, Issue 2
  • DOI: 10.5194/tc-2-95-2008

The first complete inventory of the local glaciers and ice caps on Greenland
journal, January 2012


Future sea-level rise from Greenland’s main outlet glaciers in a warming climate
journal, May 2013

  • Nick, Faezeh M.; Vieli, Andreas; Andersen, Morten Langer
  • Nature, Vol. 497, Issue 7448
  • DOI: 10.1038/nature12068

An ice sheet model validation framework for the Greenland ice sheet
journal, January 2017

  • Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-255-2017

The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography
journal, January 2014

  • Herzfeld, Ute C.; McDonald, Brian W.; Wallin, Bruce F.
  • Annals of Glaciology, Vol. 55, Issue 67
  • DOI: 10.3189/2014AoG67A001

Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300
journal, May 2015

  • Vizcaino, Miren; Mikolajewicz, Uwe; Ziemen, Florian
  • Geophysical Research Letters, Vol. 42, Issue 10
  • DOI: 10.1002/2014GL061142

Very high resolution regional climate model simulations over Greenland: Identifying added value: RCM SIMULATIONS FOR GREENLAND
journal, January 2012

  • Lucas-Picher, Philippe; Wulff-Nielsen, Maria; Christensen, Jens H.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D2
  • DOI: 10.1029/2011JD016267

Fast retreat of Zachariae Isstrom, northeast Greenland
journal, November 2015


Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet
journal, January 2012

  • Helsen, M. M.; van de Wal, R. S. W.; van den Broeke, M. R.
  • The Cryosphere, Vol. 6, Issue 2
  • DOI: 10.5194/tc-6-255-2012

High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core: PAST 4000 YEARS OF GREENLAND TEMPERATURE
journal, November 2011

  • Kobashi, Takuro; Kawamura, Kenji; Severinghaus, Jeffrey P.
  • Geophysical Research Letters, Vol. 38, Issue 21
  • DOI: 10.1029/2011GL049444

Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland: SEARISE GREENLAND
journal, June 2013

  • Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako
  • Journal of Geophysical Research: Earth Surface, Vol. 118, Issue 2
  • DOI: 10.1002/jgrf.20076

Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison
journal, January 2013

  • Pattyn, Frank; Perichon, Laura; Durand, Gaël
  • Journal of Glaciology, Vol. 59, Issue 215
  • DOI: 10.3189/2013JoG12J129

Initialization of ice-sheet forecasts viewed as an inverse Robin problem
journal, January 2010


A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data
journal, April 2001

  • Bamber, Jonathan L.; Ekholm, Simon; Krabill, William B.
  • Journal of Geophysical Research: Solid Earth, Vol. 106, Issue B4
  • DOI: 10.1029/2000JB900365

Results from the Ice-Sheet Model Intercomparison Project–Heinrich Event Intercomparison (ISMIP HEINO)
journal, January 2010


Evidence for general instability of past climate from a 250-kyr ice-core record
journal, July 1993

  • Dansgaard, W.; Johnsen, S. J.; Clausen, H. B.
  • Nature, Vol. 364, Issue 6434
  • DOI: 10.1038/364218a0

Heat Flux Anomalies in Antarctica Revealed by Satellite Magnetic Data
journal, July 2005


Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet
journal, January 2011


The Greenland ice sheet and greenhouse warming
journal, March 1991


The EISMINT benchmarks for testing ice-sheet models
journal, January 1996


Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions
journal, January 2016

  • Mosbeux, Cyrille; Gillet-Chaulet, Fabien; Gagliardini, Olivier
  • Geoscientific Model Development, Vol. 9, Issue 7
  • DOI: 10.5194/gmd-9-2549-2016

Results from the EISMINT model intercomparison: the effects of thermomechanical coupling
journal, January 2000


    Works referencing / citing this record:

    Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level
    journal, July 2019


    Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise
    journal, July 2018

    • Moon, Twila; Ahlstrøm, Andreas; Goelzer, Heiko
    • Current Climate Change Reports, Vol. 4, Issue 3
    • DOI: 10.1007/s40641-018-0107-0

    An Integrated View of Greenland Ice Sheet Mass Changes Based on Models and Satellite Observations
    journal, June 2019

    • Mottram, Ruth; B. Simonsen, Sebastian; Høyer Svendsen, Synne
    • Remote Sensing, Vol. 11, Issue 12
    • DOI: 10.3390/rs11121407

    Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise
    journal, July 2018

    • Moon, Twila; Ahlstrøm, Andreas; Goelzer, Heiko
    • Current Climate Change Reports, Vol. 4, Issue 3
    • DOI: 10.1007/s40641-018-0107-0

    Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level
    journal, July 2019


    An Integrated View of Greenland Ice Sheet Mass Changes Based on Models and Satellite Observations
    journal, June 2019

    • Mottram, Ruth; B. Simonsen, Sebastian; Høyer Svendsen, Synne
    • Remote Sensing, Vol. 11, Issue 12
    • DOI: 10.3390/rs11121407

    SICOPOLIS-AD v1: an open-source adjoint modeling framework for ice sheet simulation enabled by the algorithmic differentiation tool OpenAD
    journal, January 2020

    • Logan, Liz C.; Narayanan, Sri Hari Krishna; Greve, Ralf
    • Geoscientific Model Development, Vol. 13, Issue 4
    • DOI: 10.5194/gmd-13-1845-2020