skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heptavalent Actinide Tetroxides NpO 4 and PuO 4 : Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO 4

Abstract

The highest known actinide oxidation states are Np(VII) and Pu(VII), both of which have been identified in solution and solid compounds. Recently a molecular Np(VII) complex, NpO 3(NO 3) 2-, was prepared and characterized in the gas phase. In accord with the lower stability of heptavalent Pu, no Pu(VII) molecular species has been identified. Reported here are the gas-phase syntheses and characterizations of NpO 4 - and PuO 4 -. Reactivity studies and density functional theory computations indicate the heptavalent metal oxidation state in both. This is the first instance of Pu(VII) in the absence of stabilizing effects due to condensed phase solvation or crystal fields. Here, the results indicate that addition of an electron to neutral PuO 4, which has a computed electron affinity of 2.56 eV, counterintuitively results in oxidation of Pu(V) to Pu(VII), concomitant with superoxide reduction.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1436653
Grant/Contract Number:
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 121; Journal Issue: 47; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gibson, John K., de Jong, Wibe A., Dau, Phuong D., and Gong, Yu. Heptavalent Actinide Tetroxides NpO4– and PuO4–: Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO4. United States: N. p., 2017. Web. doi:10.1021/acs.jpca.7b09721.
Gibson, John K., de Jong, Wibe A., Dau, Phuong D., & Gong, Yu. Heptavalent Actinide Tetroxides NpO4– and PuO4–: Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO4. United States. doi:10.1021/acs.jpca.7b09721.
Gibson, John K., de Jong, Wibe A., Dau, Phuong D., and Gong, Yu. Tue . "Heptavalent Actinide Tetroxides NpO4– and PuO4–: Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO4". United States. doi:10.1021/acs.jpca.7b09721.
@article{osti_1436653,
title = {Heptavalent Actinide Tetroxides NpO4– and PuO4–: Oxidation of Pu(V) to Pu(VII) by Adding an Electron to PuO4},
author = {Gibson, John K. and de Jong, Wibe A. and Dau, Phuong D. and Gong, Yu},
abstractNote = {The highest known actinide oxidation states are Np(VII) and Pu(VII), both of which have been identified in solution and solid compounds. Recently a molecular Np(VII) complex, NpO3(NO3)2-, was prepared and characterized in the gas phase. In accord with the lower stability of heptavalent Pu, no Pu(VII) molecular species has been identified. Reported here are the gas-phase syntheses and characterizations of NpO4- and PuO4-. Reactivity studies and density functional theory computations indicate the heptavalent metal oxidation state in both. This is the first instance of Pu(VII) in the absence of stabilizing effects due to condensed phase solvation or crystal fields. Here, the results indicate that addition of an electron to neutral PuO4, which has a computed electron affinity of 2.56 eV, counterintuitively results in oxidation of Pu(V) to Pu(VII), concomitant with superoxide reduction.},
doi = {10.1021/acs.jpca.7b09721},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 47,
volume = 121,
place = {United States},
year = {Tue Nov 14 00:00:00 EST 2017},
month = {Tue Nov 14 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 14, 2018
Publisher's Version of Record

Save / Share: