skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CBETA - Cornell University Brookhaven National Laboratory electron energy recovery test accelerator

Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 8th International Particle Accelerator Conference (IPAC17), Bella Center, Copenhagen, Denmark, 5/14/2017 - 5/19/2017
Country of Publication:
United States

Citation Formats

Trbojevic, Dejan. CBETA - Cornell University Brookhaven National Laboratory electron energy recovery test accelerator. United States: N. p., 2017. Web.
Trbojevic, Dejan. CBETA - Cornell University Brookhaven National Laboratory electron energy recovery test accelerator. United States.
Trbojevic, Dejan. Sun . "CBETA - Cornell University Brookhaven National Laboratory electron energy recovery test accelerator". United States. doi:.
title = {CBETA - Cornell University Brookhaven National Laboratory electron energy recovery test accelerator},
author = {Trbojevic, Dejan},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun May 14 00:00:00 EDT 2017},
month = {Sun May 14 00:00:00 EDT 2017}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams.more » The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.« less
  • An electron gun utilizing a radio frequency accelerating cavity operating at a frequency of 2856 MHZ is described. Low level tests of a model cavity designed for use with either a thermionic or laser driven photo-cathode are presented. Calculations for a laser driven photo-cathode at a bunch charge of 1nC in a 5 psec bunch are given. With this configuration we hope to achieve an emittance (..gamma..sigma/sub x/sigma/sub x/) of 5 to 10 /times/ 10/sup /minus/6/ m /center dot/ rad at an output energy of 4.85 MeV for a 1nC charge. 9 refs., 10 figs., 4 tabs.
  • Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MWmore » CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system.« less
  • Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studiesmore » along with measurements.« less