skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Capacity Cathode Material with High Voltage for Li-Ion Batteries

Abstract

Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.

Authors:
 [1];  [2];  [3];  [2];  [3];  [3];  [1];  [1];  [3]; ORCiD logo [1];  [2];  [2]
  1. Chinese Academy of Sciences (CAS), Beijing (China); Univ. of Chinese Academy of Sciences, Beijing (China)
  2. Chinese Academy of Sciences (CAS), Beijing (China)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1436262
Alternate Identifier(s):
OSTI ID: 1416997
Report Number(s):
BNL-203616-2018-JAAM
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 9; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Shi, Ji -Lei, Xiao, Dong -Dong, Ge, Mingyuan, Yu, Xiqian, Chu, Yong, Huang, Xiaojing, Zhang, Xu -Dong, Yin, Ya -Xia, Yang, Xiao -Qing, Guo, Yu -Guo, Gu, Lin, and Wan, Li -Jun. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. United States: N. p., 2018. Web. doi:10.1002/adma.201705575.
Shi, Ji -Lei, Xiao, Dong -Dong, Ge, Mingyuan, Yu, Xiqian, Chu, Yong, Huang, Xiaojing, Zhang, Xu -Dong, Yin, Ya -Xia, Yang, Xiao -Qing, Guo, Yu -Guo, Gu, Lin, & Wan, Li -Jun. High-Capacity Cathode Material with High Voltage for Li-Ion Batteries. United States. doi:10.1002/adma.201705575.
Shi, Ji -Lei, Xiao, Dong -Dong, Ge, Mingyuan, Yu, Xiqian, Chu, Yong, Huang, Xiaojing, Zhang, Xu -Dong, Yin, Ya -Xia, Yang, Xiao -Qing, Guo, Yu -Guo, Gu, Lin, and Wan, Li -Jun. Mon . "High-Capacity Cathode Material with High Voltage for Li-Ion Batteries". United States. doi:10.1002/adma.201705575. https://www.osti.gov/servlets/purl/1436262.
@article{osti_1436262,
title = {High-Capacity Cathode Material with High Voltage for Li-Ion Batteries},
author = {Shi, Ji -Lei and Xiao, Dong -Dong and Ge, Mingyuan and Yu, Xiqian and Chu, Yong and Huang, Xiaojing and Zhang, Xu -Dong and Yin, Ya -Xia and Yang, Xiao -Qing and Guo, Yu -Guo and Gu, Lin and Wan, Li -Jun},
abstractNote = {Electrochemical energy storage devices with a high energy density are an important technology in modern society, especially for electric vehicles. The most effective approach to improve the energy density of batteries is to search for high-capacity electrode materials. According to the concept of energy quality, a high-voltage battery delivers a highly useful energy, thus providing a new insight to improve energy density. Based on this concept, a novel and successful strategy to increase the energy density and energy quality by increasing the discharge voltage of cathode materials and preserving high capacity is proposed. The proposal is realized in high-capacity Li-rich cathode materials. The average discharge voltage is increased from 3.5 to 3.8 V by increasing the nickel content and applying a simple after-treatment, and the specific energy is improved from 912 to 1033 Wh kg-1. The current work provides an insightful universal principle for developing, designing, and screening electrode materials for high energy density and energy quality.},
doi = {10.1002/adma.201705575},
journal = {Advanced Materials},
issn = {0935-9648},
number = 9,
volume = 30,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 40 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: a) Schematic of heat quality (i.e., equivalent thermal energy storage in a high-temperature heat source can supply more useful work). b) Schematic of energy quality (equivalent electrical energy storage in a high-voltage battery can offer more useful work). c) Schematic of high energy quality of cathodes and anodes.

Save / Share:

Works referenced in this record:

Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries
journal, January 2015

  • Hong, Jihyun; Gwon, Hyeokjo; Jung, Sung-Kyun
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0071514jes

Reversible anionic redox chemistry in high-capacity layered-oxide electrodes
journal, July 2013

  • Sathiya, M.; Rousse, G.; Ramesha, K.
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3699

Layered Cathode Materials Li[Ni[sub x]Li[sub (1/3−2x/3)]Mn[sub (2/3−x/3)]]O[sub 2] for Lithium-Ion Batteries
journal, January 2001

  • Lu, Zhonghua; MacNeil, D. D.; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 11
  • DOI: 10.1149/1.1407994

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Effect of High Voltage on the Structure and Electrochemistry of LiNi 0.5 Mn 0.5 O 2 :  A Joint Experimental and Theoretical Study
journal, October 2006

  • Bréger, Julien; Meng, Ying S.; Hinuma, Yoyo
  • Chemistry of Materials, Vol. 18, Issue 20
  • DOI: 10.1021/cm060886r

The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials
journal, May 2016

  • Seo, Dong-Hwa; Lee, Jinhyuk; Urban, Alexander
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2524

Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials
journal, September 2014

  • Oh, Pilgun; Myeong, Seungjun; Cho, Woongrae
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl502980k

Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries
journal, January 2016


Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
journal, April 2014

  • Zheng, Jianming; Gu, Meng; Genc, Arda
  • Nano Letters, Vol. 14, Issue 5
  • DOI: 10.1021/nl500486y

Materials Challenges and Opportunities of Lithium Ion Batteries
journal, January 2011

  • Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 3
  • DOI: 10.1021/jz1015422

Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries
journal, January 2014


Carbon-Coated Porous Aluminum Foil Anode for High-Rate, Long-Term Cycling Stability, and High Energy Density Dual-Ion Batteries
journal, September 2016


Thermodynamic Properties of the Intermetallic Systems Lithium-Antimony and Lithium-Bismuth
journal, January 1978

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 125, Issue 1
  • DOI: 10.1149/1.2131401

Origin of voltage decay in high-capacity layered oxide electrodes
journal, December 2014

  • Sathiya, M.; Abakumov, A. M.; Foix, D.
  • Nature Materials, Vol. 14, Issue 2
  • DOI: 10.1038/nmat4137

Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides
journal, October 2015

  • Shukla, Alpesh Khushalchand; Ramasse, Quentin M.; Ophus, Colin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9711

Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li 2 MnO 3 −LiCo 1/3 Ni 1/3 Mn 1/3 O 2
journal, March 2011

  • Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek
  • Journal of the American Chemical Society, Vol. 133, Issue 12
  • DOI: 10.1021/ja108588y

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling
journal, July 2014

  • Yang, Feifei; Liu, Yijin; Martha, Surendra K.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl502090z

Direct In situ Observation of Li 2 O Evolution on Li-Rich High-Capacity Cathode Material, Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤0.5)
journal, January 2014

  • Hy, Sunny; Felix, Felix; Rick, John
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja410137s

Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries
journal, July 2016

  • Qiu, Bao; Zhang, Minghao; Wu, Lijun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12108

Evolutions of Li 1.2 Mn 0.61 Ni 0.18 Mg 0.01 O 2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy
journal, September 2012

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Chemistry of Materials, Vol. 24, Issue 18
  • DOI: 10.1021/cm301140g

Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes
journal, January 2016


A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries
journal, December 2013

  • Ates, Mehmet Nurullah; Mukerjee, Sanjeev; Abraham, K. M.
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.070403jes

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Synthesis and Characterization of the Lithium-Rich Core–Shell Cathodes with Low Irreversible Capacity and Mitigated Voltage Fade
journal, April 2015


Ultimate Limits to Intercalation Reactions for Lithium Batteries
journal, October 2014

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr5003003

Higher, Stronger, Better…︁ A Review of 5 Volt Cathode Materials for Advanced Lithium-Ion Batteries
journal, June 2012


First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries
journal, July 2013

  • Boulineau, Adrien; Simonin, Loïc; Colin, Jean-François
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4019275

Review of the U.S. Department of Energy’s “Deep Dive” Effort to Understand Voltage Fade in Li- and Mn-Rich Cathodes
journal, October 2015

  • Croy, Jason R.; Balasubramanian, Mahalingam; Gallagher, Kevin G.
  • Accounts of Chemical Research, Vol. 48, Issue 11
  • DOI: 10.1021/acs.accounts.5b00277

Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries
journal, March 2015

  • Liu, Wen; Oh, Pilgun; Liu, Xien
  • Angewandte Chemie International Edition, Vol. 54, Issue 15
  • DOI: 10.1002/anie.201409262

Enhancing the Kinetics of Li-Rich Cathode Materials through the Pinning Effects of Gradient Surface Na + Doping
journal, December 2015

  • Qing, Ren-Peng; Shi, Ji-Lei; Xiao, Dong-Dong
  • Advanced Energy Materials, Vol. 6, Issue 6
  • DOI: 10.1002/aenm.201501914

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries
journal, July 2016

  • Shi, Ji-Lei; Zhang, Jie-Nan; He, Min
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 31
  • DOI: 10.1021/acsami.6b06733

High-Energy Cathode Materials (Li 2 MnO 3 –LiMO 2 ) for Lithium-Ion Batteries
journal, March 2013

  • Yu, Haijun; Zhou, Haoshen
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8
  • DOI: 10.1021/jz400032v

Quantifying Hysteresis and Voltage Fade in xLi 2 MnO 3 (1-x)LiMn 0.5 Ni 0.5 O 2 Electrodes as a Function of Li 2 MnO 3 Content
journal, December 2013

  • Croy, Jason R.; Gallagher, Kevin G.; Balasubramanian, Mahalingam
  • Journal of The Electrochemical Society, Vol. 161, Issue 3
  • DOI: 10.1149/2.049403jes

Synthesis, Structure, and Electrochemical Behavior of Li[Ni[sub x]Li[sub 1/3−2x/3]Mn[sub 2/3−x/3]]O[sub 2]
journal, January 2002

  • Lu, Zhonghua; Beaulieu, L. Y.; Donaberger, R. A.
  • Journal of The Electrochemical Society, Vol. 149, Issue 6
  • DOI: 10.1149/1.1471541

High-Performance LiNi 0.5 Mn 1.5 O 4 Spinel Controlled by Mn 3+ Concentration and Site Disorder
journal, March 2012


Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries
journal, March 2017


Design and Preparation of Materials for Advanced Electrochemical Storage
journal, June 2012

  • Melot, Brent C.; Tarascon, J. -M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300088q

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Critical Role of Cations in Lithium Sites on Extended Electrochemical Reversibility of Co-Rich Layered Oxide
journal, March 2017

  • Cho, Woongrae; Myeong, Seungjun; Kim, Namhyung
  • Advanced Materials, Vol. 29, Issue 21
  • DOI: 10.1002/adma.201605578

A new active Li–Mn–O compound for high energy density Li-ion batteries
journal, November 2015

  • Freire, M.; Kosova, N. V.; Jordy, C.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4479

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Understanding the Role of Ni in Stabilizing the Lithium-Rich High-Capacity Cathode Material Li[Ni x Li (1–2 x )/3 Mn (2– x )/3 ]O 2 (0 ≤ x ≤ 0.5)
journal, December 2014

  • Hy, Sunny; Cheng, Ju-Hsiang; Liu, Jyong-Yue
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm501664y

Nickel-Rich and Lithium-Rich Layered Oxide Cathodes: Progress and Perspectives
journal, October 2015

  • Manthiram, Arumugam; Knight, James C.; Myung, Seung-Taek
  • Advanced Energy Materials, Vol. 6, Issue 1
  • DOI: 10.1002/aenm.201501010

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

    Works referencing / citing this record:

    Hybrid electrolyte enables safe and practical 5 V LiNi 0.5 Mn 1.5 O 4 batteries
    journal, January 2019

    • Chandra Rath, Purna; Wu, Chia-Jung; Patra, Jagabandhu
    • Journal of Materials Chemistry A, Vol. 7, Issue 27
    • DOI: 10.1039/c9ta04147h

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.