skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Resolution Digital Imaging Platform for NDE Transient Testing

Abstract

Neutron radiography using the foil-film transfer method is currently employed for the quantitative evaluation of the geometric and compositional characteristics of nuclear fuel burn-up distribution, visualization of cracks and void formations, fuel location determination, pellet-clad and pellet-pellet gaps identification, and to understand the state of non-fuel component geometries. Although this method is gamma insensitive and provides large area high spatial resolution radiographs, this process takes significant time to produce an image, which is impractical for neutron radiography and/or tomography. A large area digital detector that can simultaneously provide high spatial resolution, rapid response, and can operate in a harsh radiation environment is needed to accomplish these tasks. We are developing a novel solid-state digital imaging detector based on neutron intercepting integrated circuit. This detector offers high sensitivity to thermal neutrons, is insensitive to gamma radiation, has fast temporal response, is able to image highly-radioactive specimens with high spatial resolution, and can withstand intense mixed radiation environments. Low cost modular design and easy scalability to realize very large active areas are its other attractive features. In Phase I, we established the feasibility of developing a solid-state neutron radiography detector through experimental tests conducted at Oak Ridge National Laboratory and at Idahomore » National Laboratory. The prototype detector demonstrated high efficiency to thermal neutrons, exceptional spatial resolution, insensitivity to gamma background from fuel specimens, and its ability to acquire images in minutes under realistic field conditions. The goal of the Phase II program is to develop a fully functional, large area digital neutron detector. The IC readout circuitry, data acquisition hardware, and software will be developed. The resulting prototype will be thoroughly characterized to demonstrate its sensitivity to neutrons, insensitivity to gamma radiation, high resolution imaging capability, and its ability to operate in a harsh radiation environment under field conditions. Technology commercialization activities will also be undertaken in parallel.« less

Authors:
 [1]
  1. Radiation Monitoring Devices, Inc., Watertown, MA (United States)
Publication Date:
Research Org.:
Radiation Monitoring Devices, Inc., Watertown, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
Contributing Org.:
Cerium Laboratories, LLC.
OSTI Identifier:
1435445
Report Number(s):
FINAL Report: DOE-RMDI-11880
RMD C1501/C1604
DOE Contract Number:  
SC0011880
Type / Phase:
SBIR (Phase II)
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; large area high resolution neutron detector; semiconductor neutron detector; high temporal resolution neutron imager; nuclear fuel imaging

Citation Formats

Nagarkar, Vivek V. High Resolution Digital Imaging Platform for NDE Transient Testing. United States: N. p., 2018. Web.
Nagarkar, Vivek V. High Resolution Digital Imaging Platform for NDE Transient Testing. United States.
Nagarkar, Vivek V. Tue . "High Resolution Digital Imaging Platform for NDE Transient Testing". United States.
@article{osti_1435445,
title = {High Resolution Digital Imaging Platform for NDE Transient Testing},
author = {Nagarkar, Vivek V.},
abstractNote = {Neutron radiography using the foil-film transfer method is currently employed for the quantitative evaluation of the geometric and compositional characteristics of nuclear fuel burn-up distribution, visualization of cracks and void formations, fuel location determination, pellet-clad and pellet-pellet gaps identification, and to understand the state of non-fuel component geometries. Although this method is gamma insensitive and provides large area high spatial resolution radiographs, this process takes significant time to produce an image, which is impractical for neutron radiography and/or tomography. A large area digital detector that can simultaneously provide high spatial resolution, rapid response, and can operate in a harsh radiation environment is needed to accomplish these tasks. We are developing a novel solid-state digital imaging detector based on neutron intercepting integrated circuit. This detector offers high sensitivity to thermal neutrons, is insensitive to gamma radiation, has fast temporal response, is able to image highly-radioactive specimens with high spatial resolution, and can withstand intense mixed radiation environments. Low cost modular design and easy scalability to realize very large active areas are its other attractive features. In Phase I, we established the feasibility of developing a solid-state neutron radiography detector through experimental tests conducted at Oak Ridge National Laboratory and at Idaho National Laboratory. The prototype detector demonstrated high efficiency to thermal neutrons, exceptional spatial resolution, insensitivity to gamma background from fuel specimens, and its ability to acquire images in minutes under realistic field conditions. The goal of the Phase II program is to develop a fully functional, large area digital neutron detector. The IC readout circuitry, data acquisition hardware, and software will be developed. The resulting prototype will be thoroughly characterized to demonstrate its sensitivity to neutrons, insensitivity to gamma radiation, high resolution imaging capability, and its ability to operate in a harsh radiation environment under field conditions. Technology commercialization activities will also be undertaken in parallel.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2018},
month = {5}
}

Technical Report:
This technical report may be released as soon as May 1, 2022
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item. Keep in mind that many technical reports are not cataloged in WorldCat.

Save / Share: