skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bio-inspired method to obtain multifunctional dynamic nanocomposites

Abstract

A method for a polymeric or nanocomposite material. The method includes assembling a multiphase hard-soft structure, where the structure includes a hard micro- or nano-phase, and a soft micro- or nano-phase that includes a polymeric scaffold. In the method, the polymeric scaffold includes dynamically interacting motifs and has a glass transition temperature (T.sub.g) lower than the intended operating temperature of the material.

Inventors:
; ; ;
Publication Date:
Research Org.:
The Regents of the University of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1434704
Patent Number(s):
9,938,368
Application Number:
14/383,038
Assignee:
The Regents of the University of California (Oakland, CA) CHO
DOE Contract Number:  
FG02-04ER46162
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Jun 02
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Kushner, Aaron M., Guan, Zhibin, Williams, Gregory, and Chen, Yulin. Bio-inspired method to obtain multifunctional dynamic nanocomposites. United States: N. p., 2018. Web.
Kushner, Aaron M., Guan, Zhibin, Williams, Gregory, & Chen, Yulin. Bio-inspired method to obtain multifunctional dynamic nanocomposites. United States.
Kushner, Aaron M., Guan, Zhibin, Williams, Gregory, and Chen, Yulin. Tue . "Bio-inspired method to obtain multifunctional dynamic nanocomposites". United States. https://www.osti.gov/servlets/purl/1434704.
@article{osti_1434704,
title = {Bio-inspired method to obtain multifunctional dynamic nanocomposites},
author = {Kushner, Aaron M. and Guan, Zhibin and Williams, Gregory and Chen, Yulin},
abstractNote = {A method for a polymeric or nanocomposite material. The method includes assembling a multiphase hard-soft structure, where the structure includes a hard micro- or nano-phase, and a soft micro- or nano-phase that includes a polymeric scaffold. In the method, the polymeric scaffold includes dynamically interacting motifs and has a glass transition temperature (T.sub.g) lower than the intended operating temperature of the material.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Apr 10 00:00:00 EDT 2018},
month = {Tue Apr 10 00:00:00 EDT 2018}
}

Patent:

Save / Share:

Works referenced in this record:

Nitroxide-mediated homo- and block copolymerization of styrene and multifunctional acryl- and methacryl derivatives
journal, January 2005

  • Yin, Meizhen; Krause, Tilo; Messerschmidt, Martin
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 43, Issue 9, p. 1873-1882
  • DOI: 10.1002/pola.20667

The Transition from Stiff to Compliant Materials in Squid Beaks
journal, March 2008


Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis
journal, March 2008

  • Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.
  • Science, Vol. 319, Issue 5868, p. 1370-1374
  • DOI: 10.1126/science.1153307

Dynamic materials: The chemistry of self-healing
journal, February 2012


Autonomic healing of polymer composites
journal, February 2001

  • White, S. R.; Sottos, N. R.; Geubelle, P. H.
  • Nature, Vol. 409, Issue 6822, p. 794-797
  • DOI: 10.1038/35057232

A Thermally Re-mendable Cross-Linked Polymeric Material
journal, March 2002

  • Chen, Xiangxu; Dam, Matheus A.; Ono, Kanji
  • Science, Vol. 295, Issue 5560, p. 1698-1702
  • DOI: 10.1126/science.1065879

Optically healable supramolecular polymers
journal, April 2011

  • Burnworth, Mark; Tang, Liming; Kumpfer, Justin R.
  • Nature, Vol. 472, Issue 7343, p. 334-337
  • DOI: 10.1038/nature09963

Self-healing and thermoreversible rubber from supramolecular assembly
journal, February 2008

  • Cordier, Philippe; Tournilhac, Fran�ois; Souli�-Ziakovic, Corinne
  • Nature, Vol. 451, Issue 7181, p. 977-980
  • DOI: 10.1038/nature06669

Self-Healing Materials
journal, September 2010

  • Hager, Martin D.; Greil, Peter; Leyens, Christoph
  • Advanced Materials, Vol. 22, Issue 47, p. 5424-5430
  • DOI: 10.1002/adma.201003036

Cooperative End-to-End and Lateral Hydrogen-Bonding Motifs in Supramolecular Thermoplastic Elastomers
journal, June 2006

  • Kautz, Holger; van Beek, D. J. M.; Sijbesma, Rint P.
  • Macromolecules, Vol. 39, Issue 13, p. 4265-4267
  • DOI: 10.1021/ma060706z

Self-Healing Polymers and Composites
journal, June 2010


Synthesis, Properties, and Light-Induced Shape Memory Effect of Multiblock Polyesterurethanes Containing Biodegradable Segments and Pendant Cinnamamide Groups
journal, January 2011

  • Wu, Linbo; Jin, Chunli; Sun, Xiangying
  • Biomacromolecules, Vol. 12, Issue 1, p. 235-241
  • DOI: 10.1021/bm1012162

Nanoparticle Netpoints for Shape-Memory Polymers
journal, August 2011

  • Agarwal, Praveen; Chopra, Madhur; Archer, Lynden A.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8670-8673
  • DOI: 10.1002/anie.201103908

A Biomimetic Modular Polymer with Tough and Adaptive Properties
journal, July 2009

  • Kushner, Aaron M.; Vossler, John D.; Williams, Gregory A.
  • Journal of the American Chemical Society, Vol. 131, Issue 25, p. 8766-8768
  • DOI: 10.1021/ja9009666

Quadruple hydrogen bonds of ureido-pyrimidinone moieties investigated in the solid state by 1H double-quantum MAS NMR spectroscopy
journal, July 2002

  • Schnell, Ingo; Langer, Benedikt; S�ntjens, Serge H. M.
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 15, p. 3750-3758
  • DOI: 10.1039/B203333J

Shape-memory polymer networks from sol�gel cross-linked alkoxysilane-terminated poly(?-caprolactone)
journal, February 2012

  • Paderni, Katia; Pandini, Stefano; Passera, Simone
  • Journal of Materials Science, Vol. 47, Issue 10, p. 4354-4362
  • DOI: 10.1007/s10853-012-6289-2