skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrically reversible cracks in an intermetallic film controlled by an electric field

Abstract

Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 10 8 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks can reach over 10 7 cycles under 10-μs pulses, without catastrophic failure of the film.

Authors:
 [1];  [1];  [2];  [3];  [3];  [3];  [1];  [4];  [5];  [6];  [7];  [3];  [1];  [1];  [8];  [2]; ORCiD logo [5];  [3];  [1];  [3] more »; ORCiD logo [9];  [2];  [10] « less
  1. Beihang Univ., Beijing (China). School of Materials Science and Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)
  3. Pennsylvania State Univ., University Park, PA (United States). Dept. of Material Sciences and Engineering
  4. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  6. Montanuniversität Leoben (Austria). Erich Schmid Inst. of Materials Science, Austrian Academy of Sciences and Dept. of Material Physics
  7. Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering
  8. Huazhong Univ. of Science and Technology, Wuhan (China). School of Optical and Electronic Information
  9. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  10. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering and Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Natural Science Foundation of China (NNSFC); Beihang Univ., Beijing (China); National Science Foundation (NSF)
OSTI Identifier:
1434036
Grant/Contract Number:  
AC02-05CH11231; 51771009; DMR1629270; 1160504
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Related Information: © 2017 The Author(s).; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electronic devices; information storage

Citation Formats

Liu, Z. Q., Liu, J. H., Biegalski, M. D., Hu, J. -M., Shang, S. L., Ji, Y., Wang, J. M., Hsu, S. L., Wong, A. T., Cordill, M. J., Gludovatz, B., Marker, C., Yan, H., Feng, Z. X., You, L., Lin, M. W., Ward, T. Z., Liu, Z. K., Jiang, C. B., Chen, L. Q., Ritchie, R. O., Christen, H. M., and Ramesh, R. Electrically reversible cracks in an intermetallic film controlled by an electric field. United States: N. p., 2018. Web. doi:10.1038/s41467-017-02454-8.
Liu, Z. Q., Liu, J. H., Biegalski, M. D., Hu, J. -M., Shang, S. L., Ji, Y., Wang, J. M., Hsu, S. L., Wong, A. T., Cordill, M. J., Gludovatz, B., Marker, C., Yan, H., Feng, Z. X., You, L., Lin, M. W., Ward, T. Z., Liu, Z. K., Jiang, C. B., Chen, L. Q., Ritchie, R. O., Christen, H. M., & Ramesh, R. Electrically reversible cracks in an intermetallic film controlled by an electric field. United States. doi:10.1038/s41467-017-02454-8.
Liu, Z. Q., Liu, J. H., Biegalski, M. D., Hu, J. -M., Shang, S. L., Ji, Y., Wang, J. M., Hsu, S. L., Wong, A. T., Cordill, M. J., Gludovatz, B., Marker, C., Yan, H., Feng, Z. X., You, L., Lin, M. W., Ward, T. Z., Liu, Z. K., Jiang, C. B., Chen, L. Q., Ritchie, R. O., Christen, H. M., and Ramesh, R. Wed . "Electrically reversible cracks in an intermetallic film controlled by an electric field". United States. doi:10.1038/s41467-017-02454-8. https://www.osti.gov/servlets/purl/1434036.
@article{osti_1434036,
title = {Electrically reversible cracks in an intermetallic film controlled by an electric field},
author = {Liu, Z. Q. and Liu, J. H. and Biegalski, M. D. and Hu, J. -M. and Shang, S. L. and Ji, Y. and Wang, J. M. and Hsu, S. L. and Wong, A. T. and Cordill, M. J. and Gludovatz, B. and Marker, C. and Yan, H. and Feng, Z. X. and You, L. and Lin, M. W. and Ward, T. Z. and Liu, Z. K. and Jiang, C. B. and Chen, L. Q. and Ritchie, R. O. and Christen, H. M. and Ramesh, R.},
abstractNote = {Cracks in solid-state materials are typically irreversible. We report electrically reversible opening and closing of nanoscale cracks in an intermetallic thin film grown on a ferroelectric substrate driven by a small electric field (~0.83 kV/cm). Accordingly, a nonvolatile colossal electroresistance on-off ratio of more than 108 is measured across the cracks in the intermetallic film at room temperature. Cracks are easily formed with low-frequency voltage cycling and remain stable when the device is operated at high frequency, which offers intriguing potential for next-generation high-frequency memory applications. Moreover, endurance testing demonstrates that the opening and closing of such cracks can reach over 107 cycles under 10-μs pulses, without catastrophic failure of the film.},
doi = {10.1038/s41467-017-02454-8},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {Wed Jan 03 00:00:00 EST 2018},
month = {Wed Jan 03 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Memristive devices for computing
journal, January 2013

  • Yang, J. Joshua; Strukov, Dmitri B.; Stewart, Duncan R.
  • Nature Nanotechnology, Vol. 8, Issue 1, p. 13-24
  • DOI: 10.1038/nnano.2012.240