skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

Abstract

Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.

Authors:
 [1];  [1];  [1];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. New York Univ., Brooklyn, NY (United States). Dept. of Electrical and Computer Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1433971
Report Number(s):
BNL-203506-2018-JAAM
Journal ID: ISSN 1936-0851
Grant/Contract Number:
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 11; Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 77 NANOSCIENCE AND NANOTECHNOLOGY; 42 ENGINEERING; bioFETs; biosensor; detection limit; silicon-on-insulator; super-Nernstian; ultrathin silicon

Citation Formats

Wu, Ting, Alharbi, Abdullah, You, Kai-Dyi, Kisslinger, Kim, Stach, Eric A., and Shahrjerdi, Davood. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors. United States: N. p., 2017. Web. doi:10.1021/acsnano.7b02986.
Wu, Ting, Alharbi, Abdullah, You, Kai-Dyi, Kisslinger, Kim, Stach, Eric A., & Shahrjerdi, Davood. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors. United States. doi:10.1021/acsnano.7b02986.
Wu, Ting, Alharbi, Abdullah, You, Kai-Dyi, Kisslinger, Kim, Stach, Eric A., and Shahrjerdi, Davood. Wed . "Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors". United States. doi:10.1021/acsnano.7b02986.
@article{osti_1433971,
title = {Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors},
author = {Wu, Ting and Alharbi, Abdullah and You, Kai-Dyi and Kisslinger, Kim and Stach, Eric A. and Shahrjerdi, Davood},
abstractNote = {Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.},
doi = {10.1021/acsnano.7b02986},
journal = {ACS Nano},
number = 7,
volume = 11,
place = {United States},
year = {Wed Jun 21 00:00:00 EDT 2017},
month = {Wed Jun 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 21, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • We report on room-temperature plasmonic detection of sub-terahertz radiation by InAlAs/InGaAs/InP high electron mobility transistors with an asymmetric dual-grating-gate structure. Maximum responsivities of 22.7 kV/W at 200 GHz and 21.5 kV/W at 292 GHz were achieved under unbiased drain-to-source condition. The minimum noise equivalent power was estimated to be 0.48 pW/Hz{sup 0.5} at 200 GHz at room temperature, which is the record-breaking value ever reported for plasmonic THz detectors. Frequency dependence of the responsivity in the frequency range of 0.2–2 THz is in good agreement with the theory.
  • We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization, the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation, the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings, the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodicmore » structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.« less
  • We report on the detection of terahertz radiation by an on-chip planar asymmetric plasmonic structure in the frequency region above one terahertz. The detector is based on a field-effect transistor that has a dual grating gate structure with an asymmetric unit cell, which provides a geometrical asymmetry within the structure. Biasing the detector with a dc source-to-drain current in the linear region of the current-voltage characteristic introduces an additional asymmetry (electrical asymmetry) that enhances the detector responsivity by more than one order of magnitude (by a factor of 20) as compared with the unbiased case due to the cooperative effectmore » of the geometrical and electrical asymmetries. In addition to the responsivity enhancement, we report a relatively low noise equivalent power and a peculiar non-monotonic dependence of the responsivity on the frequency, which results from the multi-plasmonic-cavity structure of the device.« less
  • We report the calculation of hole direct tunneling (DT) current from the inversion layer in a p-metal{endash}oxide{endash}semiconductor field-effect transistor based on a solid physical background. Our results are in good agreement with those obtained from carrier separation measurements over a wide range of oxide thicknesses in the ultrathin regime. The effect of valence band mixing on hole quantization in an inversion layer in a Si substrate is properly accounted for by an improved one-band effective mass approximation. A modified Wentzel{endash}Kramers{endash}Brillouin approximation to calculate the hole transmission probability is used by adopting a more accurate dispersion equation in the oxide gap.more » Our method is general, simple, and computationally efficient. It may even be used to calculate the hole DT current in other gate dielectric materials. {copyright} 2001 American Institute of Physics.« less
  • The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{submore » ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.« less