skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?

Abstract

The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of $${10}^{3}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}$$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates frommore » Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.« less

Authors:
; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ORCiD logo; ; more »; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ORCiD logo « less
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); National Aeronautics and Space Administration (NASA); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1434944
Alternate Identifier(s):
OSTI ID: 1417636; OSTI ID: 1422475; OSTI ID: 1432243
Report Number(s):
arXiv:1710.05845; FERMILAB-PUB-17-452-AE
Journal ID: ISSN 2041-8213; 1630983; TRN: US1802826
Grant/Contract Number:  
AC02-07CH11359; AC02-76SF00515; AC02-05CH11231; 14-WPS14-0048; HST-HF2-51383.001; NAS 5-26555; AST-1411763; AST- 1714498; NNX15AE50G; NNX16AC22G; AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal. Letters (Online)
Additional Journal Information:
Journal Volume: 852; Journal Issue: 1; Journal ID: ISSN 2041-8213
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; Stars: Neutron; stars; neutron

Citation Formats

Scolnic, D., Kessler, R., Brout, D., Cowperthwaite, P. S., Soares-Santos, M., Annis, J., Herner, K., Chen, H. -Y., Sako, M., Doctor, Z., Butler, R. E., Palmese, A., Diehl, H. T., Frieman, J., Holz, D. E., Berger, E., Chornock, R., Villar, V. A., Nicholl, M., Biswas, R., Hounsell, R., Foley, R. J., Metzger, J., Rest, A., García-Bellido, J., Möller, A., Nugent, P., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, C., Doel, P., Drlica-Wagner, A., Eifler, T. F., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Honscheid, K., James, D. J., Johnson, M. W. G., Johnson, M. D., Krause, E., Kuehn, K., Kuhlmann, S., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Neilsen, E., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, R. C., Tucker, D. L., and Walker, A. R. How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. United States: N. p., 2017. Web. doi:10.3847/2041-8213/aa9d82.
Scolnic, D., Kessler, R., Brout, D., Cowperthwaite, P. S., Soares-Santos, M., Annis, J., Herner, K., Chen, H. -Y., Sako, M., Doctor, Z., Butler, R. E., Palmese, A., Diehl, H. T., Frieman, J., Holz, D. E., Berger, E., Chornock, R., Villar, V. A., Nicholl, M., Biswas, R., Hounsell, R., Foley, R. J., Metzger, J., Rest, A., García-Bellido, J., Möller, A., Nugent, P., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, C., Doel, P., Drlica-Wagner, A., Eifler, T. F., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Honscheid, K., James, D. J., Johnson, M. W. G., Johnson, M. D., Krause, E., Kuehn, K., Kuhlmann, S., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Neilsen, E., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, R. C., Tucker, D. L., & Walker, A. R. How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. United States. https://doi.org/10.3847/2041-8213/aa9d82
Scolnic, D., Kessler, R., Brout, D., Cowperthwaite, P. S., Soares-Santos, M., Annis, J., Herner, K., Chen, H. -Y., Sako, M., Doctor, Z., Butler, R. E., Palmese, A., Diehl, H. T., Frieman, J., Holz, D. E., Berger, E., Chornock, R., Villar, V. A., Nicholl, M., Biswas, R., Hounsell, R., Foley, R. J., Metzger, J., Rest, A., García-Bellido, J., Möller, A., Nugent, P., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bechtol, K., Benoit-Lévy, A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, C., Doel, P., Drlica-Wagner, A., Eifler, T. F., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Honscheid, K., James, D. J., Johnson, M. W. G., Johnson, M. D., Krause, E., Kuehn, K., Kuhlmann, S., Lahav, O., Li, T. S., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., Menanteau, F., Miquel, R., Neilsen, E., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, R. C., Tucker, D. L., and Walker, A. R. 2017. "How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?". United States. https://doi.org/10.3847/2041-8213/aa9d82. https://www.osti.gov/servlets/purl/1434944.
@article{osti_1434944,
title = {How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?},
author = {Scolnic, D. and Kessler, R. and Brout, D. and Cowperthwaite, P. S. and Soares-Santos, M. and Annis, J. and Herner, K. and Chen, H. -Y. and Sako, M. and Doctor, Z. and Butler, R. E. and Palmese, A. and Diehl, H. T. and Frieman, J. and Holz, D. E. and Berger, E. and Chornock, R. and Villar, V. A. and Nicholl, M. and Biswas, R. and Hounsell, R. and Foley, R. J. and Metzger, J. and Rest, A. and García-Bellido, J. and Möller, A. and Nugent, P. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Bechtol, K. and Benoit-Lévy, A. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Castander, F. J. and Cunha, C. E. and D’Andrea, C. B. and Costa, L. N. da and Davis, C. and Doel, P. and Drlica-Wagner, A. and Eifler, T. F. and Flaugher, B. and Fosalba, P. and Gaztanaga, E. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Honscheid, K. and James, D. J. and Johnson, M. W. G. and Johnson, M. D. and Krause, E. and Kuehn, K. and Kuhlmann, S. and Lahav, O. and Li, T. S. and Lima, M. and Maia, M. A. G. and March, M. and Marshall, J. L. and Menanteau, F. and Miquel, R. and Neilsen, E. and Plazas, A. A. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, R. C. and Tucker, D. L. and Walker, A. R.},
abstractNote = {The discovery of a kilonova (KN) associated with the Advanced LIGO (aLIGO)/Virgo event GW170817 opens up new avenues of multi-messenger astrophysics. Here, using realistic simulations, we provide estimates of the number of KNe that could be found in data from past, present, and future surveys without a gravitational-wave trigger. For the simulation, we construct a spectral time-series model based on the DES-GW multi-band light curve from the single known KN event, and we use an average of BNS rates from past studies of ${10}^{3}\,{\mathrm{Gpc}}^{-3}\,{\mathrm{yr}}^{-1}$, consistent with the one event found so far. Examining past and current data sets from transient surveys, the number of KNe we expect to find for ASAS-SN, SDSS, PS1, SNLS, DES, and SMT is between 0 and 0.3. We predict the number of detections per future survey to be 8.3 from ATLAS, 10.6 from ZTF, 5.5/69 from LSST (the Deep Drilling/Wide Fast Deep), and 16.0 from WFIRST. The maximum redshift of KNe discovered for each survey is $z=0.8$ for WFIRST, $z=0.25$ for LSST, and $z=0.04$ for ZTF and ATLAS. This maximum redshift for WFIRST is well beyond the sensitivity of aLIGO and some future GW missions. For the LSST survey, we also provide contamination estimates from Type Ia and core-collapse supernovae: after light curve and template-matching requirements, we estimate a background of just two events. Finally, more broadly, we stress that future transient surveys should consider how to optimize their search strategies to improve their detection efficiency and to consider similar analyses for GW follow-up programs.},
doi = {10.3847/2041-8213/aa9d82},
url = {https://www.osti.gov/biblio/1434944}, journal = {The Astrophysical Journal. Letters (Online)},
issn = {2041-8213},
number = 1,
volume = 852,
place = {United States},
year = {Fri Dec 22 00:00:00 EST 2017},
month = {Fri Dec 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Display of key characteristics for transient surveys used in our analysis. Left panel: the depth per night per filter. Middle panel: the mean gap between repeat observations in a single filter. Right panel: the survey area covered each observing year. Numbers for each panel are given explicitly inmore » Table 1.« less

Save / Share:

Works referenced in this record:

GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
journal, June 2016


Observation of Gravitational Waves from a Binary Black Hole Merger
journal, February 2016


GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2
journal, June 2017


GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
journal, October 2017


Radioactivity and Thermalization in the Ejecta of Compact Object Mergers and Their Impact on Kilonova Light Curves
journal, September 2016


AN r -PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B
journal, August 2013


Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
journal, August 2014


Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source
journal, October 2017


A Decam Search for an Optical Counterpart to the ligo Gravitational-Wave Event Gw151226
journal, July 2016


Short GRB and binary black hole standard sirens as a probe of dark energy
journal, September 2006


The Dark Energy Survey: more than dark energy – an overview
journal, March 2016


The LSST operations simulator
conference, August 2014


A Search for Kilonovae in the Dark Energy Survey
journal, March 2017


The dark Energy Camera
journal, October 2015


Demographics of the Galaxies Hosting Short-Duration Gamma-Ray Bursts
journal, May 2013


The Sloan Digital sky Survey-Ii Supernova Survey: Technical Summary
journal, December 2007


KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS
journal, December 2014


K ‐Corrections and Spectral Templates of Type Ia Supernovae
journal, July 2007


The Macronova in GRB 050709 and the GRB-macronova connection
journal, September 2016


The Pan-STARRS wide-field optical/NIR imaging survey
conference, July 2010


Results from the Supernova Photometric Classification Challenge
journal, December 2010

  • Kessler, Richard; Bassett, Bruce; Belov, Pavel
  • Publications of the Astronomical Society of the Pacific, Vol. 122, Issue 898
  • https://doi.org/10.1086/657607

SNANA: A Public Software Package for Supernova Analysis
journal, September 2009

  • Kessler, Richard; Bernstein, Joseph P.; Cinabro, David
  • Publications of the Astronomical Society of the Pacific, Vol. 121, Issue 883
  • https://doi.org/10.1086/605984

The Difference Imaging Pipeline for the Transient Search in the dark Energy Survey
journal, November 2015


Galaxy Groups Within 3500 km s −1
journal, June 2017


Kilonovae
journal, May 2017


What is the most Promising Electromagnetic Counterpart of a Neutron star Binary Merger?
journal, January 2012


Detectability of compact binary merger macronovae
journal, April 2017


The Sloan Digital sky Survey-Ii Supernova Survey: Search Algorithm and Follow-Up Observations
journal, December 2007


The SkyMapper Transient Survey
journal, January 2017


Determining the Hubble constant from gravitational wave observations
journal, September 1986


DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg 2 : iPTF13bxl AND GRB 130702A
journal, October 2013


A dark Energy Camera Search for an Optical Counterpart to the First Advanced ligo Gravitational wave Event Gw150914
journal, May 2016


A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B
journal, August 2013


An Early Warning System for Asteroid Impact
journal, January 2011


The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck
journal, October 2017


Simlib_Minion
dataset, January 2017


Simlib_Minion
dataset, January 2017


Simlib_Minion
dataset, January 2018


Works referencing / citing this record:

Enabling real-time multi-messenger astrophysics discoveries with deep learning
journal, October 2019


From the microscopic to the macroscopic world: from nucleons to neutron stars
journal, August 2019


A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline
journal, November 2018


A Strategy for LSST to Unveil a Population of Kilonovae without Gravitational-wave Triggers
journal, May 2019


Models and Simulations for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC)
journal, July 2019


Prospects of the local Hubble parameter measurement using gravitational waves from double neutron stars
journal, January 2018


Rapidly evolving transients in the Dark Energy Survey
journal, August 2018


First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases
journal, February 2019


Serendipitous discoveries of kilonovae in the LSST main survey: maximizing detections of sub-threshold gravitational wave events
journal, February 2019


Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints
journal, October 2018


LSST: From Science Drivers to Reference Design and Anticipated Data Products
journal, March 2019


LSST Target-of-opportunity Observations of Gravitational-wave Events: Essential and Efficient
journal, March 2019


A Rapidly Declining Transient Discovered with the Subaru/Hyper Suprime-Cam
journal, October 2019


Simulations of the WFIRST Supernova Survey and Forecasts of Cosmological Constraints
text, January 2018


Models and simulations for the photometric lsst astronomical time series classification challenge (Plasticc)
text, January 2019


LSST: from Science Drivers to Reference Design and Anticipated Data Products
text, January 2008


Rapidly evolving transients in the Dark Energy Survey
text, January 2018


A rapidly declining transient discovered with Subaru/Hyper Suprime-Cam
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.