skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WEC-Sim Worksop.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the METS 2017.
Country of Publication:
United States

Citation Formats

Ruehl, Kelley Michelle. WEC-Sim Worksop.. United States: N. p., 2017. Web.
Ruehl, Kelley Michelle. WEC-Sim Worksop.. United States.
Ruehl, Kelley Michelle. Sat . "WEC-Sim Worksop.". United States. doi:.
title = {WEC-Sim Worksop.},
author = {Ruehl, Kelley Michelle},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • To promote and support the wave energy industry, a wave energy converter (WEC) design tool, WEC-Sim, is being developed by Sandia National Laboratories and the National Renewable Energy Laboratory. In this paper, the WEC-Sim code is used to model a point absorber WEC designed by the U.S. Department of Energy's reference model project. Preliminary verification was performed by comparing results of the WEC-Sim simulation through a code-to-code comparison, utilizing the commercial codes ANSYS-AQWA, WaveDyn, and OrcaFlex. A preliminary validation of the code was also performed by comparing WEC-Sim simulation results to experimental wave tank tests.
  • Wave energy converters (WECs) are commonly designed and analyzed using numerical models that combine multi-body dynamics with hydrodynamic models based on the Cummins Equation and linearized hydrodynamic coefficients. These modeling methods are attractive design tools because they are computationally inexpensive and do not require the use of high performance computing resources necessitated by high-fidelity methods, such as Navier Stokes computational fluid dynamics. Modeling hydrodynamics using linear coefficients assumes that the device undergoes small motions and that the wetted surface area of the devices is approximately constant. WEC devices, however, are typically designed to undergo large motions in order to maximizemore » power extraction, calling into question the validity of assuming that linear hydrodynamic models accurately capture the relevant fluid-structure interactions. In this paper, we study how calculating buoyancy and Froude-Krylov forces from the instantaneous position of a WEC device (referred to as instantaneous buoyancy and Froude-Krylov forces from herein) changes WEC simulation results compared to simulations that use linear hydrodynamic coefficients. First, we describe the WEC-Sim tool used to perform simulations and how the ability to model instantaneous forces was incorporated into WEC-Sim. We then use a simplified one-body WEC device to validate the model and to demonstrate how accounting for these instantaneously calculated forces affects the accuracy of simulation results, such as device motions, hydrodynamic forces, and power generation.« less
  • Abstract not provided.
  • WEC-Sim is a mid-fidelity numerical tool for modeling wave energy conversion (WEC) devices. The code uses the MATLAB SimMechanics package to solve the multi-body dynamics and models the wave interactions using hydrodynamic coefficients derived from frequency domain boundary element methods. In this paper, the new modeling features introduced in the latest release of WEC-Sim will be presented. The first feature discussed is the conversion of the fluid memory kernel to a state-space approximation that provides significant gains in computational speed. The benefit of the state-space calculation becomes even greater after the hydrodynamic body-to-body coefficients are introduced as the number ofmore » interactions increases exponentially with the number of floating bodies. The final feature discussed is the capability toadd Morison elements to provide additional hydrodynamic damping and inertia. This is generally used as a tuning feature, because performance is highly dependent on the chosen coefficients. In this paper, a review of the hydrodynamic theory for each of the features is provided and successful implementation is verified using test cases.« less