skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Very fast hot carrier diffusion in unconstrained MoS 2 on a glass substrate: discovered by picosecond ET-Raman

Abstract

Very high nonmonotonic thickness-dependent hot carrier diffusivity of MoS 2 in a normal- κ dielectric screening environment was discovered by ET-Raman technique.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Department of Mechanical Engineering, Iowa State University, Ames, USA
  2. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1431157
Grant/Contract Number:
DENE0000671
Resource Type:
Journal Article: Published Article
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 8; Journal Issue: 23; Related Information: CHORUS Timestamp: 2018-04-20 04:52:51; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Yuan, Pengyu, Tan, Hong, Wang, Ridong, Wang, Tianyu, and Wang, Xinwei. Very fast hot carrier diffusion in unconstrained MoS 2 on a glass substrate: discovered by picosecond ET-Raman. United Kingdom: N. p., 2018. Web. doi:10.1039/C8RA01106K.
Yuan, Pengyu, Tan, Hong, Wang, Ridong, Wang, Tianyu, & Wang, Xinwei. Very fast hot carrier diffusion in unconstrained MoS 2 on a glass substrate: discovered by picosecond ET-Raman. United Kingdom. doi:10.1039/C8RA01106K.
Yuan, Pengyu, Tan, Hong, Wang, Ridong, Wang, Tianyu, and Wang, Xinwei. Mon . "Very fast hot carrier diffusion in unconstrained MoS 2 on a glass substrate: discovered by picosecond ET-Raman". United Kingdom. doi:10.1039/C8RA01106K.
@article{osti_1431157,
title = {Very fast hot carrier diffusion in unconstrained MoS 2 on a glass substrate: discovered by picosecond ET-Raman},
author = {Yuan, Pengyu and Tan, Hong and Wang, Ridong and Wang, Tianyu and Wang, Xinwei},
abstractNote = {Very high nonmonotonic thickness-dependent hot carrier diffusivity of MoS 2 in a normal- κ dielectric screening environment was discovered by ET-Raman technique.},
doi = {10.1039/C8RA01106K},
journal = {RSC Advances},
number = 23,
volume = 8,
place = {United Kingdom},
year = {Mon Jan 01 00:00:00 EST 2018},
month = {Mon Jan 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1039/C8RA01106K

Save / Share: