skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanorheology of Entangled Polymer Melts

Abstract

In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.

Authors:
 [1];  [2];  [1]
  1. Univ. of North Carolina, Chapel Hill, NC (United States). Department of Chemistry
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1430900
Alternate Identifier(s):
OSTI ID: 1419116
Report Number(s):
SAND-2018-0707J
Journal ID: ISSN 0031-9007; PRLTAO; 660141; TRN: US1802636
Grant/Contract Number:  
AC04-94AL85000; AC02-05CH11231; NA0003525
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 120; Journal Issue: 5; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ge, Ting, Grest, Gary S., and Rubinstein, Michael. Nanorheology of Entangled Polymer Melts. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.120.057801.
Ge, Ting, Grest, Gary S., & Rubinstein, Michael. Nanorheology of Entangled Polymer Melts. United States. doi:10.1103/PhysRevLett.120.057801.
Ge, Ting, Grest, Gary S., and Rubinstein, Michael. Thu . "Nanorheology of Entangled Polymer Melts". United States. doi:10.1103/PhysRevLett.120.057801. https://www.osti.gov/servlets/purl/1430900.
@article{osti_1430900,
title = {Nanorheology of Entangled Polymer Melts},
author = {Ge, Ting and Grest, Gary S. and Rubinstein, Michael},
abstractNote = {In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function GGSE(t) from the mean square displacement of NPs. GGSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of GGSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in GGSE(t) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, GGSE(t) approaches G(t) of the ring melt with no entanglement plateau.},
doi = {10.1103/PhysRevLett.120.057801},
journal = {Physical Review Letters},
issn = {0031-9007},
number = 5,
volume = 120,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: GGSE(t) (open squares) for d = 5σ in linear polymers with N = 800. The corresponding 〈 ∆r2(t) 〉 is shown in the inset (see black line). The log-log slope α = 2 for the ballistic regime and α = 1 for the Fickian regime are indicated. Themore » estimated end of the crossover between ballistic and thermal motion is indicated by the black square.« less

Save / Share:

Works referenced in this record:

Static and dynamic properties of large polymer melts in equilibrium
journal, April 2016

  • Hsu, Hsiao-Ping; Kremer, Kurt
  • The Journal of Chemical Physics, Vol. 144, Issue 15
  • DOI: 10.1063/1.4946033

Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation
journal, August 2000


Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers
journal, February 2017


Size Effect of Nanoparticle Diffusion in a Polymer Melt
journal, October 2014

  • Grabowski, Christopher A.; Mukhopadhyay, Ashis
  • Macromolecules, Vol. 47, Issue 20
  • DOI: 10.1021/ma501670u

Treating inertia in passive microbead rheology
journal, February 2012


Accurate and efficient methods for modeling colloidal mixtures in an explicit solvent using molecular dynamics
journal, September 2008

  • in 't Veld, Pieter J.; Plimpton, Steven J.; Grest, Gary S.
  • Computer Physics Communications, Vol. 179, Issue 5
  • DOI: 10.1016/j.cpc.2008.03.005

Entangled Polymer Melts: Relation between Plateau Modulus and Stress Autocorrelation Function
journal, August 2009


Rheology and Microscopic Topology of Entangled Polymeric Liquids
journal, February 2004


Fluid Mechanics of Microrheology
journal, January 2010


Brownian Motion of Colloidal Spheres in Aqueous PEO Solutions
journal, May 2004

  • van Zanten, John H.; Amin, Samiul; Abdala, Ahmed A.
  • Macromolecules, Vol. 37, Issue 10
  • DOI: 10.1021/ma035250p

Nanoparticle Diffusion in Polymer Nanocomposites
journal, March 2014


Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations
journal, November 2012


Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids
journal, February 1995


Hopping Diffusion of Nanoparticles in Polymer Matrices
journal, January 2015

  • Cai, Li-Heng; Panyukov, Sergey; Rubinstein, Michael
  • Macromolecules, Vol. 48, Issue 3
  • DOI: 10.1021/ma501608x

Universal Viscosity Behavior of Polymer Nanocomposites
journal, November 2012


Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics
journal, May 2011

  • Halverson, Jonathan D.; Lee, Won Bo; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 134, Issue 20
  • DOI: 10.1063/1.3587138

Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. I. Statics
journal, May 2011

  • Halverson, Jonathan D.; Lee, Won Bo; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 134, Issue 20
  • DOI: 10.1063/1.3587137

Quantitative Theory for Linear Dynamics of Linear Entangled Polymers
journal, July 2002

  • Likhtman, Alexei E.; McLeish, Tom C. B.
  • Macromolecules, Vol. 35, Issue 16
  • DOI: 10.1021/ma0200219

Molecular Origin and Dynamic Behavior of Slip in Sheared Polymer Films
journal, January 2004


Unexpected power-law stress relaxation of entangled ring polymers
journal, October 2008

  • Kapnistos, M.; Lang, M.; Vlassopoulos, D.
  • Nature Materials, Vol. 7, Issue 12
  • DOI: 10.1038/nmat2292

Diffusion and Viscosity in a Crowded Environment:  from Nano- to Macroscale
journal, December 2006

  • Szymański, Jedrzej; Patkowski, Adam; Wilk, Agnieszka
  • The Journal of Physical Chemistry B, Vol. 110, Issue 51
  • DOI: 10.1021/jp0666784

Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering
journal, May 2002


Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites
journal, January 2016


Mobility of Nonsticky Nanoparticles in Polymer Liquids
journal, October 2011

  • Cai, Li-Heng; Panyukov, Sergey; Rubinstein, Michael
  • Macromolecules, Vol. 44, Issue 19
  • DOI: 10.1021/ma201583q

Entanglement-Controlled Subdiffusion of Nanoparticles within Concentrated Polymer Solutions
journal, August 2012


Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength
journal, July 2014


Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts:  A Test of the Stokes−Einstein Law
journal, May 2008

  • Liu, Jun; Cao, Dapeng; Zhang, Liqun
  • The Journal of Physical Chemistry C, Vol. 112, Issue 17
  • DOI: 10.1021/jp800474t

Nanoparticle Polymer Composites: Where Two Small Worlds Meet
journal, November 2006

  • Balazs, A. C.; Emrick, T.; Russell, T. P.
  • Science, Vol. 314, Issue 5802, p. 1107-1110
  • DOI: 10.1126/science.1130557

Dynamics of entangled linear polymer melts:  A molecular‐dynamics simulation
journal, April 1990

  • Kremer, Kurt; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 92, Issue 8
  • DOI: 10.1063/1.458541

Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations
journal, January 2016


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.