skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis, properties, and formation mechanism of Mn-doped Zn 2 SiO 4 nanowires and associated heterostructures

Abstract

In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn 2SiO 4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration as a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn 2SiO 4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nmmore » in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn 2SiO 4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn 2SiO 4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn 2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn 2SiO 4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.« less

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Stony Brook Univ., NY (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1430869
Alternate Identifier(s):
OSTI ID: 1434151
Report Number(s):
BNL-203418-2018-JAAM
Journal ID: ISSN 1463-9076
Grant/Contract Number:  
SC0012704; SC-00112704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 20; Journal Issue: 15; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; zinc silicate; nanowires; CdSe quantum dots; heterostructures; energy transfer; charge transfer

Citation Formats

Liu, Haiqing, Moronta, Dominic, Li, Luyao, Yue, Shiyu, and Wong, Stanislaus S. Synthesis, properties, and formation mechanism of Mn-doped Zn2 SiO4 nanowires and associated heterostructures. United States: N. p., 2018. Web. doi:10.1039/C8CP00151K.
Liu, Haiqing, Moronta, Dominic, Li, Luyao, Yue, Shiyu, & Wong, Stanislaus S. Synthesis, properties, and formation mechanism of Mn-doped Zn2 SiO4 nanowires and associated heterostructures. United States. doi:10.1039/C8CP00151K.
Liu, Haiqing, Moronta, Dominic, Li, Luyao, Yue, Shiyu, and Wong, Stanislaus S. Wed . "Synthesis, properties, and formation mechanism of Mn-doped Zn2 SiO4 nanowires and associated heterostructures". United States. doi:10.1039/C8CP00151K.
@article{osti_1430869,
title = {Synthesis, properties, and formation mechanism of Mn-doped Zn2 SiO4 nanowires and associated heterostructures},
author = {Liu, Haiqing and Moronta, Dominic and Li, Luyao and Yue, Shiyu and Wong, Stanislaus S.},
abstractNote = {In this study, we have put forth a facile hydrothermal approach to synthesize an array of one-dimensional (1D) Mn-doped Zn2SiO4 nanostructures. Specifically, we have probed and correlated the effects of controllable reaction parameters such as the pH and Mn dopant concentrations with the resulting crystal structures and morphologies of the products obtained. Based upon our results, we find that careful tuning of the pH versus the Mn dopant level gives rise to opposite trends with respect to the overall size of the resulting one-dimensional nanostructures. Significantly, we have highlighted the role of the Mn dopant ion concentration as a potentially generalizable reaction parameter in solution-based synthesis for controlling morphology and hence, the observed optical behavior. Indeed, such a strategy can be potentially generalized to systems such as but not limited to Mn-doped ZnS, CdS, and CdSe quantum dots (QD), which, to the best of our knowledge, denote promising candidates for a variety of optoelectronic applications. Specifically, we have carefully optimized the synthesis conditions in order to generate a series of chemically well-defined Mn-doped Zn2SiO4 not only possessing Mn concentrations ranging from 3% to 8% but also characterized by highly crystalline, monodisperse wire-like motifs measuring ~30 nm in diameter and ~700 nm in length. Optically, the photoluminescence signals associated with the 1D series yielded a volcano-shaped relationship between PL intensities and the Mn dopant level. In additional experiments, we have immobilized CdSe quantum dots (QDs) onto the external surfaces of our as-synthesized Mn-doped Zn2SiO4 nanowires, in order to form novel composite heterostructures. The optical properties of the CdSe QD–Mn:Zn2SiO4 heterostructures have been subsequently examined. Our results have demonstrated the likely co-existence of both energy transfer and charge transfer phenomena between the two constituent components of our as-prepared composites. Specifically, when both components are photoexcited, both energy transfer and charge transfer were found to plausibly occur, albeit in opposite directions. When the CdSe QDs are excited alone for example, charge transfer probably takes place from the CdSe QDs to the dopant Mn2+ ions. We believe that our as-processed heterostructures are therefore promising as a tunable light-harvesting motif. Essentially, these materials have broadened the effective light absorption range for optical ‘accessibility’, not only through their incorporation of dopant-tunable Zn2SiO4 possessing complementary absorption properties to those of the QDs but also through their integration of CdSe QDs with size-tailorable optical behavior.},
doi = {10.1039/C8CP00151K},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 15,
volume = 20,
place = {United States},
year = {Wed Mar 28 00:00:00 EDT 2018},
month = {Wed Mar 28 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 28, 2019
Publisher's Version of Record

Save / Share: