skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries

Abstract

Lithium (Li) metal is an ideal anode material for high energy density batteries. However, its low Coulombic efficiency (CE) and formation of dendrites during the plating and stripping processes has hindered its applications in rechargeable Li metal batteries. The accurate measurement of Li CE is a critical factor to predict the cycle life of Li metal batteries, but the measurement of Li CE is affected by various factors that often leads to conflicting values reported in the literature. Here, we investigate various factors that affect the measurement of Li CE and propose a more accurate method of determining Li CE. It was also found that the capacity used for cycling greatly affects the stabilization cycles and the average CE. A higher cycling capacity leads to a shorter number of stabilization cycles and higher average CE. With a proper high-concentration ether-based electrolyte, Li metal can be cycled with a high average CE of 99.5 % for over 100 cycles at a high capacity of 6 mAh cm-2 suitable for practical applications.

Authors:
 [1];  [2];  [2];  [2]; ORCiD logo [1]
  1. The Joint Center for Energy Storage Research (JCESR), Pacific Northwest National Laboratory, Richland WA 99354 USA; Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA
  2. Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1430409
Report Number(s):
PNNL-SA-127159
Journal ID: ISSN 1614-6832; KC0208010
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 7; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English

Citation Formats

Adams, Brian D., Zheng, Jianming, Ren, Xiaodi, Xu, Wu, and Zhang, Ji-Guang. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. United States: N. p., 2017. Web. doi:10.1002/aenm.201702097.
Adams, Brian D., Zheng, Jianming, Ren, Xiaodi, Xu, Wu, & Zhang, Ji-Guang. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. United States. doi:10.1002/aenm.201702097.
Adams, Brian D., Zheng, Jianming, Ren, Xiaodi, Xu, Wu, and Zhang, Ji-Guang. Wed . "Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries". United States. doi:10.1002/aenm.201702097.
@article{osti_1430409,
title = {Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries},
author = {Adams, Brian D. and Zheng, Jianming and Ren, Xiaodi and Xu, Wu and Zhang, Ji-Guang},
abstractNote = {Lithium (Li) metal is an ideal anode material for high energy density batteries. However, its low Coulombic efficiency (CE) and formation of dendrites during the plating and stripping processes has hindered its applications in rechargeable Li metal batteries. The accurate measurement of Li CE is a critical factor to predict the cycle life of Li metal batteries, but the measurement of Li CE is affected by various factors that often leads to conflicting values reported in the literature. Here, we investigate various factors that affect the measurement of Li CE and propose a more accurate method of determining Li CE. It was also found that the capacity used for cycling greatly affects the stabilization cycles and the average CE. A higher cycling capacity leads to a shorter number of stabilization cycles and higher average CE. With a proper high-concentration ether-based electrolyte, Li metal can be cycled with a high average CE of 99.5 % for over 100 cycles at a high capacity of 6 mAh cm-2 suitable for practical applications.},
doi = {10.1002/aenm.201702097},
journal = {Advanced Energy Materials},
issn = {1614-6832},
number = 7,
volume = 8,
place = {United States},
year = {2017},
month = {10}
}

Works referenced in this record:

Electrochemical formation of lithium-aluminium alloys in propylene carbonate electrolytes
journal, April 1981


The electrochemical behaviour of 1,3-dioxolane—LiClO4 solutions—I. Uncontaminated solutions
journal, March 1990


Li 2 O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode
journal, September 2016

  • Zhang, Zhenggang; Xu, Xiaoyue; Wang, Shuwei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 40
  • DOI: 10.1021/acsami.6b08775

Substrate effects on Li + electrodeposition in Li secondary batteries with a competitive kinetics model
journal, January 2015

  • Xu, Qian; Yang, Yifu; Shao, Huixia
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 31
  • DOI: 10.1039/C5CP02789F

Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries
journal, November 2013

  • Lu, Yingying; Korf, Kevin; Kambe, Yu
  • Angewandte Chemie International Edition, Vol. 53, Issue 2
  • DOI: 10.1002/anie.201307137

Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane
journal, January 2015

  • Harry, Katherine J.; Liao, Xunxun; Parkinson, Dilworth Y.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0321514jes

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility
journal, December 2014


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Anode-Free Rechargeable Lithium Metal Batteries
journal, August 2016

  • Qian, Jiangfeng; Adams, Brian D.; Zheng, Jianming
  • Advanced Functional Materials, Vol. 26, Issue 39
  • DOI: 10.1002/adfm.201602353

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Effects of Carbonate Solvents and Lithium Salts on Morphology and Coulombic Efficiency of Lithium Electrode
journal, January 2013

  • Ding, Fei; Xu, Wu; Chen, Xilin
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.100310jes

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes
journal, September 2015

  • Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14458

A lithium anode protection guided highly-stable lithium–sulfur battery
journal, January 2014

  • Ma, Guoqiang; Wen, Zhaoyin; Wu, Meifen
  • Chem. Commun., Vol. 50, Issue 91
  • DOI: 10.1039/C4CC05535G

Interpreting High Precision Coulometry Results on Li-ion Cells
journal, January 2011

  • Smith, A. J.; Burns, J. C.; Xiong, D.
  • Journal of The Electrochemical Society, Vol. 158, Issue 10
  • DOI: 10.1149/1.3625232

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


The Application of Atomic Force Microscopy for the Study of Li Deposition Processes
journal, January 1996

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 143, Issue 11
  • DOI: 10.1149/1.1837248

The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions
journal, January 1994

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054718

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling
journal, May 2014

  • Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae
  • International Journal of Molecular Sciences, Vol. 15, Issue 5
  • DOI: 10.3390/ijms15058122

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
journal, January 2010

  • Smith, A. J.; Burns, J. C.; Trussler, S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 2
  • DOI: 10.1149/1.3268129

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


History, Evolution, and Future Status of Energy Storage
journal, May 2012


New parameters for lithium cyclability in organic electrolytes for secondary batteries
journal, January 1993

  • Sazhin, S. V.; Gorodyskii, A. V.; Khimchenko, M. Y.
  • Journal of Electroanalytical Chemistry, Vol. 344, Issue 1-2
  • DOI: 10.1016/0022-0728(93)80046-K

Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive
journal, July 2015


Lithium state diagram as a description of lithium deposit morphology
journal, May 1997

  • Sazhin, Sergey V.; Khimchenko, Mikhail Yu.; Tritenichenko, Yevgeniy N.
  • Journal of Power Sources, Vol. 66, Issue 1-2
  • DOI: 10.1016/S0378-7753(96)02542-6

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement
journal, November 2016

  • Liu, Wei; Lin, Dingchang; Pei, Allen
  • Journal of the American Chemical Society, Vol. 138, Issue 47
  • DOI: 10.1021/jacs.6b08730

A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries
journal, April 1995


Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions
journal, January 1987

  • Aurbach, D.
  • Journal of The Electrochemical Society, Vol. 134, Issue 7
  • DOI: 10.1149/1.2100722

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362