skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation

Abstract

The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.

Authors:
 [1]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Energy and Environment Directorate
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; Federal Medical Biological Agency of the Russian Federation
OSTI Identifier:
1430367
Alternate Identifier(s):
OSTI ID: 1431027
Report Number(s):
PNNL-SA-115966
Journal ID: ISSN 0144-8420
Grant/Contract Number:
AC05-76RL01830
Resource Type:
Journal Article: Published Article
Journal Name:
Radiation Protection Dosimetry
Additional Journal Information:
Journal Volume: 176; Journal Issue: 1-2; Journal ID: ISSN 0144-8420
Publisher:
Oxford University Press
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY

Citation Formats

Napier, B. A. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation. United States: N. p., 2017. Web. doi:10.1093/rpd/ncx020.
Napier, B. A. The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation. United States. doi:10.1093/rpd/ncx020.
Napier, B. A. Fri . "The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation". United States. doi:10.1093/rpd/ncx020.
@article{osti_1430367,
title = {The Mayak Worker Dosimetry System (Mwds-2013): An Introduction to The Documentation},
author = {Napier, B. A.},
abstractNote = {The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.},
doi = {10.1093/rpd/ncx020},
journal = {Radiation Protection Dosimetry},
number = 1-2,
volume = 176,
place = {United States},
year = {Fri Mar 17 00:00:00 EDT 2017},
month = {Fri Mar 17 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1093/rpd/ncx020

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • The reconstruction of radiation doses to Mayak Production Association workers in central Russia supports radiation epidemiological studies for the U.S.-Russian Joint Coordinating Committee on Radiation Effects Research. The most recent version of the dosimetry was performed with the Mayak Worker Dosimetry System-2013. Here, this introduction outlines the logic and general content of the series of articles presented in this issue of Radiation Protection Dosimetry. The articles summarize the models, describe the basis for most of the key decisions made in developing the models and present an overview of the results.
  • The distribution of calculated internal doses was determined for 8043 Mayak Production Associate (Mayak PA) workers according to the epidemiological cohorts and groups of raw data used as well as the type of industrial compounds of inhaled aerosols. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185585 mGy, with a median value of 31 mGy and a maximum of 8980 mGy maximum. The ranges of relative standard uncertainty were: from 40 to 2200% for accumulated lung dose,more » from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-18% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to lognormal. The accumulated internal plutonium dose to systemic organs was close to a log-triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow, calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.8 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.« less
  • The Mayak Worker Dosimetry System (MWDS-2013) is a system for interpreting measurement data from Mayak workers from both internal and external sources. This paper is concerned with the calculation of annual organ doses for Mayak workers exposed to plutonium aerosols, where the measurement data consists mainly of activity of plutonium in urine samples. The system utilises the latest biokinetic and dosimetric models, and unlike its predecessors, takes explicit account of uncertainties in both the measurement data and model parameters. The aim of this paper is to describe the complete MWDS-2013 system (including model parameter values and their uncertainties) and themore » methodology used (including all the relevant equations) and the assumptions made. Where necessary, supplementary papers which justify specific assumptions are cited.« less
  • The Mayak Production Association (MPA) was the first plutonium production plant in the former Soviet Union. Workers at the MPA were exposed to relatively large internal radiation intakes and external radiation exposures, particularly in the early years of plant operations. This paper describes the updated dosimetry database, Doses-2005. Doses-2005 represents a significant improvement in the determination of absorbed organ dose from external radiation and plutonium intake for the original cohort of 18,831 Mayak workers. The methods of dose reconstruction of absorbed organ doses from external radiation uses: 1) archive records of measured dose and worker exposure history, 2) measured energymore » and directional response characteristics of historical Mayak film dosimeters, and 3) calculated dose conversion factors for Mayak Study-defined exposure scenarios using Monte Carlo techniques. The methods of dose reconstruction for plutonium intake uses two revised models developed from empirical data derived from bioassay and autopsy cases and/or updates from prevailing or emerging International Commission on Radiological Protection models. Other sources of potential significant exposure to workers such as medical diagnostic x-rays, ambient onsite external radiation, neutron radiation, intake of airborne effluent, and intake of nuclides other than plutonium were evaluated to determine their impact on the dose estimates.« less
  • Databases are being created that contain verified and updated dosimetry and worker history information for workers at the Mayak Production Association. many workers had significant external and internal exposures, particularly during the early years (1948--1952) of operation. These dosimetric and worker history data are to be used in companion epidemiology studies of stochastic and deterministic effects. The database contains both external and internal dose information and is being constructed from other databases that include radiochemical analyses of tissues, bioassay data, air sampling data, while body counting data, and occupational and worker histories. The procedures, models, methods, and operational uncertainties willmore » be documented and included in the database, technical reports, and publications. The cohort of the stochastic epidemiological study is expected to include about 19,000 persons while the cohort for the deterministic epidemiological study is expected to include about 600 persons. For external dosimetry, workplace gamma, beta, and neutron doses are being reconstructed. The models used for this incorporate issues such as known isotopes, composition, shielding, further analysis of film bandage sensitivities, and records of direct measurements. Organ doses from external exposures are also being calculated. Methods for calculating dose uncertainties are being developed. For internal dosimetry, the organ doses have been calculated using the established FIB-1 biokinetic model. A new biokinetic model is being developed that includes more information of the solubility and biokinetics of the different chemical forms and particulate sizes of plutonium that were in the workplace. In addition, updated worker histories will be sued to estimate doses to some workers where direct measurements were not made. A rigorous quality control procedure is being implemented to ensure that the correct dosimetry data is entering the various databases being used by the epidemiologists.« less