skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A molecular cross-linking approach for hybrid metal oxides

Abstract

Developing methods to create hybrid materials to maximize their transformative capabilities has been the subject of significant interest. In particular, several key methods have been developed to manipulate earth abundant metal oxides such as TiO 2 to produce hybrid materials with improved or new properties relevant to a broad spectrum of applications. Here, we introduce a new approach we refer to as “molecular doping”, whereby a hybrid molecular boron oxide material is formed from polyhedral boron cluster precursors of the type [B 12(OH) 12] 2-. This new approach is enabled by the inherent robustness of the boron cluster molecular building block, which is compatible with harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, we show how this material can be successfully interfaced with TiO 2, resulting in boron-rich hybrid materials with unprecedented photophysical and electrochemical properties.

Authors:
 [1];  [2];  [3];  [1];  [2];  [4];  [2];  [2];  [2];  [2];  [5];  [2];  [6];  [7];  [2];  [2];  [8]; ORCiD logo [8]; ORCiD logo [2];  [9] more »; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [10];  [7];  [1];  [11];  [1];  [3]; ORCiD logo [1] « less
  1. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry, and California NanoSystems Inst. (CNSI)
  2. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry
  3. Univ. of California, Santa Barbara, CA (United States). Dept. of Chemical Engineering
  4. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry; Cairo Univ., Giza (Egypt)
  5. Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering
  6. Univ. of California, Santa Barbara, CA (United States). Materials Research Center
  7. Purdue Univ., West Lafayette, IN (United States). Davidson School of Chemical Engineering
  8. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  9. Univ. of Oregon, Eugene, OR (United States). Dept. of Chemistry and Biochemistry
  10. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  11. Univ. of California, Los Angeles, CA (United States). Dept. of Chemistry and Biochemistry, and California NanoSystems Inst. (CNSI); Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; National Science Foundation (NSF)
OSTI Identifier:
1429806
Grant/Contract Number:  
AC02-06CH11357; 1532232; 1625776; ACI-1053575
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 17; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Jung, Dahee, Saleh, Liban A. M., Berkson, Zachariah J., El-Kady, Maher F., Hwang, Jee Youn, Mohamed, Nahla, Wixtrom, Alex I., Titarenko, Ekaterina, Shao, Yanwu, McCarthy, Kassandra, Guo, Jian, Martini, Ignacio B., Kraemer, Stephan, Wegener, Evan C., Saint-Cricq, Philippe, Ruehle, Bastian, Langeslay, Ryan R., Delferro, Massimiliano, Brosmer, Jonathan L., Hendon, Christopher H., Gallagher-Jones, Marcus, Rodriguez, Jose, Chapman, Karena W., Miller, Jeffrey T., Duan, Xiangfeng, Kaner, Richard B., Zink, Jeffrey I., Chmelka, Bradley F., and Spokoyny, Alexander M. A molecular cross-linking approach for hybrid metal oxides. United States: N. p., 2018. Web. doi:10.1038/s41563-018-0021-9.
Jung, Dahee, Saleh, Liban A. M., Berkson, Zachariah J., El-Kady, Maher F., Hwang, Jee Youn, Mohamed, Nahla, Wixtrom, Alex I., Titarenko, Ekaterina, Shao, Yanwu, McCarthy, Kassandra, Guo, Jian, Martini, Ignacio B., Kraemer, Stephan, Wegener, Evan C., Saint-Cricq, Philippe, Ruehle, Bastian, Langeslay, Ryan R., Delferro, Massimiliano, Brosmer, Jonathan L., Hendon, Christopher H., Gallagher-Jones, Marcus, Rodriguez, Jose, Chapman, Karena W., Miller, Jeffrey T., Duan, Xiangfeng, Kaner, Richard B., Zink, Jeffrey I., Chmelka, Bradley F., & Spokoyny, Alexander M. A molecular cross-linking approach for hybrid metal oxides. United States. doi:10.1038/s41563-018-0021-9.
Jung, Dahee, Saleh, Liban A. M., Berkson, Zachariah J., El-Kady, Maher F., Hwang, Jee Youn, Mohamed, Nahla, Wixtrom, Alex I., Titarenko, Ekaterina, Shao, Yanwu, McCarthy, Kassandra, Guo, Jian, Martini, Ignacio B., Kraemer, Stephan, Wegener, Evan C., Saint-Cricq, Philippe, Ruehle, Bastian, Langeslay, Ryan R., Delferro, Massimiliano, Brosmer, Jonathan L., Hendon, Christopher H., Gallagher-Jones, Marcus, Rodriguez, Jose, Chapman, Karena W., Miller, Jeffrey T., Duan, Xiangfeng, Kaner, Richard B., Zink, Jeffrey I., Chmelka, Bradley F., and Spokoyny, Alexander M. Mon . "A molecular cross-linking approach for hybrid metal oxides". United States. doi:10.1038/s41563-018-0021-9.
@article{osti_1429806,
title = {A molecular cross-linking approach for hybrid metal oxides},
author = {Jung, Dahee and Saleh, Liban A. M. and Berkson, Zachariah J. and El-Kady, Maher F. and Hwang, Jee Youn and Mohamed, Nahla and Wixtrom, Alex I. and Titarenko, Ekaterina and Shao, Yanwu and McCarthy, Kassandra and Guo, Jian and Martini, Ignacio B. and Kraemer, Stephan and Wegener, Evan C. and Saint-Cricq, Philippe and Ruehle, Bastian and Langeslay, Ryan R. and Delferro, Massimiliano and Brosmer, Jonathan L. and Hendon, Christopher H. and Gallagher-Jones, Marcus and Rodriguez, Jose and Chapman, Karena W. and Miller, Jeffrey T. and Duan, Xiangfeng and Kaner, Richard B. and Zink, Jeffrey I. and Chmelka, Bradley F. and Spokoyny, Alexander M.},
abstractNote = {Developing methods to create hybrid materials to maximize their transformative capabilities has been the subject of significant interest. In particular, several key methods have been developed to manipulate earth abundant metal oxides such as TiO2 to produce hybrid materials with improved or new properties relevant to a broad spectrum of applications. Here, we introduce a new approach we refer to as “molecular doping”, whereby a hybrid molecular boron oxide material is formed from polyhedral boron cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron cluster molecular building block, which is compatible with harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, we show how this material can be successfully interfaced with TiO2, resulting in boron-rich hybrid materials with unprecedented photophysical and electrochemical properties.},
doi = {10.1038/s41563-018-0021-9},
journal = {Nature Materials},
number = ,
volume = 17,
place = {United States},
year = {Mon Mar 05 00:00:00 EST 2018},
month = {Mon Mar 05 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 5, 2019
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Doping Metal�Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis
journal, August 2011

  • Wang, Cheng; Xie, Zhigang; deKrafft, Kathryn E.
  • Journal of the American Chemical Society, Vol. 133, Issue 34, p. 13445-13454
  • DOI: 10.1021/ja203564w

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks
journal, August 2007

  • Guo, Y.-G.; Hu, Y.-S.; Sigle, W.
  • Advanced Materials, Vol. 19, Issue 16, p. 2087-2091
  • DOI: 10.1002/adma.200602828

Selective binding and removal of guests in a microporous metal�organic framework
journal, December 1995

  • Yaghi, O. M.; Li, Guangming; Li, Hailian
  • Nature, Vol. 378, Issue 6558, p. 703-706
  • DOI: 10.1038/378703a0

A Multiunit Catalyst with Synergistic Stability and Reactivity: A Polyoxometalate�Metal Organic Framework for Aerobic Decontamination
journal, October 2011

  • Song, Jie; Luo, Zhen; Britt, David K.
  • Journal of the American Chemical Society, Vol. 133, Issue 42, p. 16839-16846
  • DOI: 10.1021/ja203695h

A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals
journal, March 2010