skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017

Abstract

Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion to ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of anmore » appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less

Authors:
 [1];  [1];  [1]
  1. Oregon State Univ., Corvallis, OR (United States)
Publication Date:
Research Org.:
Oregon State Univ., Corvallis, OR (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1429391
Report Number(s):
DOE-OSU-0008294
DOE Contract Number:  
NE0008294
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; HTGR gas reactor

Citation Formats

Woods, Brian, Gutowska, Izabela, and Chiger, Howard. Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017. United States: N. p., 2018. Web. doi:10.2172/1429391.
Woods, Brian, Gutowska, Izabela, & Chiger, Howard. Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017. United States. doi:10.2172/1429391.
Woods, Brian, Gutowska, Izabela, and Chiger, Howard. Mon . "Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017". United States. doi:10.2172/1429391. https://www.osti.gov/servlets/purl/1429391.
@article{osti_1429391,
title = {Scaling Studies for Advanced High Temperature Reactor Concepts, Final Technical Report: October 2014—December 2017},
author = {Woods, Brian and Gutowska, Izabela and Chiger, Howard},
abstractNote = {Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion to ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.},
doi = {10.2172/1429391},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Mar 26 00:00:00 EDT 2018},
month = {Mon Mar 26 00:00:00 EDT 2018}
}

Technical Report:

Save / Share: