skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pellet-clad mechanical interaction screening using VERA applied to Watts Bar Unit 1, Cycles 1–3

Journal Article · · Nuclear Engineering and Design

The Consortium for Advanced Simulation of Light Water Reactors (CASL) aims to provide high-fidelity multiphysics simulations of light water nuclear reactors. To accomplish this, CASL is developing the Virtual Environment for Reactor Applications (VERA), which is a suite of code packages for thermal hydraulics, neutron transport, fuel performance, and coolant chemistry. As VERA continues to grow and expand, there has been an increased focus on incorporating fuel performance analysis methods. One of the primary goals of CASL is to estimate local cladding failure probability through pellet-clad interaction, which consists of both pellet-clad mechanical interaction (PCMI) and stress corrosion cracking. Estimating clad failure is important to preventing release of fission products to the primary system and accurate estimates could prove useful in establishing less conservative power ramp rates or when considering load-follow operations.While this capability is being pursued through several different approaches, the procedure presented in this article focuses on running independent fuel performance calculations with BISON using a file-based one-way coupling based on multicycle output data from high fidelity, pin-resolved coupled neutron transport–thermal hydraulics simulations. This type of approach is consistent with traditional fuel performance analysis methods, which are typically separate from core simulation analyses. A more tightly coupled approach is currently being developed, which is the ultimate target application in CASL.Recent work simulating 12 cycles of Watts Bar Unit 1 with VERA core simulator are capitalized upon, and quarter-core BISON results for parameters of interest to PCMI (maximum centerline fuel temperature, maximum clad hoop stress, and minimum gap size) are presented for Cycles 1–3. In conclusion, based on these results, this capability demonstrates its value and how it could be used as a screening tool for gathering insight into PCMI, singling out limiting rods for further, more detailed analysis.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Organization:
USDOE Office of Science (SC); USDOE Office of Nuclear Energy (NE)
Grant/Contract Number:
AC05-00OR22725; AC07-05ID14517
OSTI ID:
1429216
Alternate ID(s):
OSTI ID: 1549000
Journal Information:
Nuclear Engineering and Design, Vol. 327, Issue C; ISSN 0029-5493
Publisher:
ElsevierCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

References (7)

Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT journal December 2016
Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding — A review journal August 1990
MOOSE: A parallel computational framework for coupled systems of nonlinear equations journal October 2009
VERA Core Simulator Methodology for Pressurized Water Reactor Cycle Depletion journal January 2017
The Virtual Environment for Reactor Applications (VERA): Design and architecture journal December 2016
A new fission-gas release model journal August 1983
Multidimensional multiphysics simulation of nuclear fuel behavior journal April 2012

Cited By (1)

The technological challenge for current generation nuclear reactors journal September 2019

Figures / Tables (14)


Similar Records

Assessment of Pellet-Clad Interaction Indicators in Watts Bar Unit 1 using the VERA Framework
Conference · Thu Jan 01 00:00:00 EST 2015 · OSTI ID:1429216

Assessing pellet-clad interaction with VERA: WBN1, cycles 6-7
Conference · Fri Jul 01 00:00:00 EDT 2016 · OSTI ID:1429216

Demonstration of Load-Follow Operations with Standalone BISON through VERA
Journal Article · Sat Jul 01 00:00:00 EDT 2017 · Transactions of the American Nuclear Society · OSTI ID:1429216