skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes

Abstract

This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport of heterostructures. In addition, they lead to percolative transport through paths of minimal energy in the two-dimensional (2D) landscape of disordered energies of multiple 2D quantum wells. This model solves the carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when compared with the Schrodinger equation resolution. The theory also provides a good approximation to the density of states for the disordered system over the full range of energies required to account for transport at room temperature. The current-voltage characteristics modeled by three-dimensional simulation of a full nitride-based light emitting diode (LED) structure with compositional material fluctuations closely match the experimental behavior of high-quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in carrier transport through such complex heterostructures. Finally, details of carrier population and recombination in the different quantum wells are given.

Authors:
 [1];  [2];  [1];  [3];  [2];  [2];  [4];  [5];  [2];  [1]
  1. National Taiwan Univ., Taipei (Taiwan). Graduate Inst. of Photonics and Optoelectronics and Dept. of Electrical Engineering
  2. Univ. Paris-Saclay, Ecole Polytechnique, Palaiseau (France). Lab. of Condensed Matter Physics
  3. Univ. of Minnesota, Minneapolis, MN (United States). School of Mathematics
  4. Univ. of California, Santa Barbara, CA (United States). Dept. of Materials
  5. Univ. Paris-Saclay, Ecole Polytechnique, Palaiseau (France). Lab. of Condensed Matter Physics; Univ. of California, Santa Barbara, CA (United States). Dept. of Materials
Publication Date:
Research Org.:
Univ. of California, Santa Barbara, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office; Ministry of Science and Technology (MOST), Taipei (Taiwan); French National Research Agency (ANR); National Science Foundation (NSF)
Contributing Org.:
Ecole Polytechnique Paris National Taiwan University
OSTI Identifier:
1429094
Alternate Identifier(s):
OSTI ID: 1352105; OSTI ID: 1635237
Grant/Contract Number:  
EE0007096; 104-2923-E-002-004-MY3; 105-2221-E-002-098-MY3; ANR-14-CE05-0048-01
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review. B
Additional Journal Information:
Journal Volume: 95; Journal Issue: 14; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 97 MATHEMATICS AND COMPUTING; 36 MATERIALS SCIENCE; disordered alloys; LEDs; semiconductor compounds; methods in transport; Light emitting diodes, solid state lighting

Citation Formats

Li, Chi-Kang, Piccardo, Marco, Lu, Li-Shuo, Mayboroda, Svitlana, Martinelli, Lucio, Peretti, Jacques, Speck, James S., Weisbuch, Claude, Filoche, Marcel, and Wu, Yuh-Renn. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. United States: N. p., 2017. Web. doi:10.1103/physrevb.95.144206.
Li, Chi-Kang, Piccardo, Marco, Lu, Li-Shuo, Mayboroda, Svitlana, Martinelli, Lucio, Peretti, Jacques, Speck, James S., Weisbuch, Claude, Filoche, Marcel, & Wu, Yuh-Renn. Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes. United States. https://doi.org/10.1103/physrevb.95.144206
Li, Chi-Kang, Piccardo, Marco, Lu, Li-Shuo, Mayboroda, Svitlana, Martinelli, Lucio, Peretti, Jacques, Speck, James S., Weisbuch, Claude, Filoche, Marcel, and Wu, Yuh-Renn. 2017. "Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes". United States. https://doi.org/10.1103/physrevb.95.144206. https://www.osti.gov/servlets/purl/1429094.
@article{osti_1429094,
title = {Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes},
author = {Li, Chi-Kang and Piccardo, Marco and Lu, Li-Shuo and Mayboroda, Svitlana and Martinelli, Lucio and Peretti, Jacques and Speck, James S. and Weisbuch, Claude and Filoche, Marcel and Wu, Yuh-Renn},
abstractNote = {This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport of heterostructures. In addition, they lead to percolative transport through paths of minimal energy in the two-dimensional (2D) landscape of disordered energies of multiple 2D quantum wells. This model solves the carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when compared with the Schrodinger equation resolution. The theory also provides a good approximation to the density of states for the disordered system over the full range of energies required to account for transport at room temperature. The current-voltage characteristics modeled by three-dimensional simulation of a full nitride-based light emitting diode (LED) structure with compositional material fluctuations closely match the experimental behavior of high-quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in carrier transport through such complex heterostructures. Finally, details of carrier population and recombination in the different quantum wells are given.},
doi = {10.1103/physrevb.95.144206},
url = {https://www.osti.gov/biblio/1429094}, journal = {Physical Review. B},
issn = {2469-9950},
number = 14,
volume = 95,
place = {United States},
year = {Tue Apr 18 00:00:00 EDT 2017},
month = {Tue Apr 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 76 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Schematic of the local density of states (LDOS) arising from the landscape potential 1/ue for electrons. For simplicity the effective potential is shown in 1D.

Save / Share:

Works referenced in this record:

Study on the Optimization for Current Spreading Effect of Lateral GaN/InGaN LEDs
journal, February 2014


Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH 3 molecular beam epitaxy
journal, May 2015


PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation
journal, September 2001


Atom probe tomography assessment of the impact of electron beam exposure on In x Ga 1−x N/GaN quantum wells
journal, July 2011


Localization landscape theory of disorder in semiconductors. II. Urbach tails of disordered quantum well layers
journal, April 2017


Efficiency droop in nitride-based light-emitting diodes
journal, July 2010


Localization landscape theory of disorder in semiconductors. I. Theory and modeling
journal, April 2017


Absence of Diffusion in Certain Random Lattices
journal, March 1958


The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior
journal, September 2014


Effective Confining Potential of Quantum States in Disordered Media
journal, February 2016


High-Power GaN P-N Junction Blue-Light-Emitting Diodes
journal, December 1991


Comparative analysis of 202¯1 and 202¯1¯ semipolar GaN light emitting diodes using atom probe tomography
journal, June 2013


Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes
journal, July 1999


Band parameters for III–V compound semiconductors and their alloys
journal, June 2001


First-principles calculations of indirect Auger recombination in nitride semiconductors
journal, July 2015


Percolation transport study in nitride based LED by considering the random alloy fluctuation
journal, March 2015


The role of polarization fields in Auger-induced efficiency droop in nitride-based light-emitting diodes
journal, November 2013


Characterization of a dielectric/GaN system using atom probe tomography
journal, October 2013


Efficiency Drop in Green InGaN / GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations
journal, January 2016


Role of defects in the thermal droop of InGaN-based light emitting diodes
journal, March 2016


Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure
journal, August 2012


Minority carrier diffusion length in GaN: Dislocation density and doping concentration dependence
journal, January 2005


On the reliable analysis of indium mole fraction within In x Ga 1−x N quantum wells using atom probe tomography
journal, April 2014


Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics
journal, September 1957


Universal mechanism for Anderson and weak localization
journal, August 2012


Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures
journal, February 2002


Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities
journal, September 2009


Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis
journal, March 2010


The efficiency challenge of nitride light-emitting diodes for lighting: The efficiency challenge of nitride LEDs for lighting
journal, March 2015


Origin of efficiency droop in GaN-based light-emitting diodes
journal, October 2007


Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells
journal, October 2008


White light emitting diodes with super-high luminous efficacy
journal, August 2010


Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes
journal, July 2010


A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
journal, June 2012


Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices
journal, December 2013


The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes
journal, February 2009


Auger recombination in InGaN measured by photoluminescence
journal, October 2007


Strain-induced polarization in wurtzite III-nitride semipolar layers
journal, July 2006


Carrier distribution in (0001)InGaN∕GaN multiple quantum well light-emitting diodes
journal, February 2008


Alloy effects in Ga1−xInxN/GaN heterostructures
journal, June 2004


Ballistic transport in InGaN-based LEDs: impact on efficiency
journal, November 2010


Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures
journal, March 2002


Carrier localization mechanisms in In x Ga 1 x N/GaN quantum wells
journal, March 2011


Isotype InGaN/GaN heterobarrier diodes by ammonia molecular beam epitaxy
journal, February 2016


Droop in III-nitrides: Comparison of bulk and injection contributions
journal, November 2010


Cell polarisation in a bulk-surface model can be driven by both classic and non-classic Turing instability
journal, February 2021


Effective confining potential of quantum states in disordered media
text, January 2015


Works referencing / citing this record:

Optical absorption edge broadening in thick InGaN layers: Random alloy atomic disorder and growth mode induced fluctuations
journal, January 2018


Identification of low-energy peaks in electron emission spectroscopy of InGaN/GaN light-emitting diodes
journal, August 2018


Three dimensional simulation on the transport and quantum efficiency of UVC-LEDs with random alloy fluctuations
journal, October 2018


Interwell carrier transport in InGaN/(In)GaN multiple quantum wells
journal, April 2019


Polarity conversion of GaN nanowires grown by plasma-assisted molecular beam epitaxy
journal, April 2019


Evidence of trap-assisted Auger recombination in low radiative efficiency MBE-grown III-nitride LEDs
journal, November 2019


Kinetic Monte Carlo simulations of the dynamics of a coupled system of free and localized carriers in AlGaN
journal, January 2020


Impact of alloy disorder on Auger recombination in single InGaN/GaN core-shell microrods
journal, December 2019


Many-body localization landscape
journal, January 2020


Electronic structure of semiconductor nanostructures: A modified localization landscape theory
journal, January 2020


Switching of exciton character in double InGaN/GaN quantum wells
journal, October 2018


Review—The Physics of Recombinations in III-Nitride Emitters
journal, January 2020


An Empirical Model for GaN Light Emitters with Dot-in-Wire Polar Nanostructures
journal, January 2020


Many-Body Localization Landscape
text, January 2019


An Empirical Model for GaN Light Emitters with Dot-in-Wire Polar Nanostructures
journal, January 2020